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Summary

This deliverable presents a newly developed suite of hydro-mechanical hybrid models for forecasting human-

induced seismicity. The models are devised to be utilised in real-time or pseudo real-time applications, such

as in the context of Adaptive Traffic Light System. We first present two simplified hybrid models that are

based on axis-symmetric pore-fluid diffusion in a confined reservoir. The first model (HM0) accounts for

linear pore-fluid diffusion, whereas the second model (HM1) includes the non-linear response of the medium

upon injection of fluids. In both models, seismicity is triggered when the local pore-fluid pressure reaches a

critical value according to Mohr-Coulomb failure criterion. Stochasticity is introduced either via an analytical

statistical perturbation of the model parameters (hereafter CAPS), or via a stochastic earthquake simulator

(hereafter SEED model). We apply these two models to the injection experiments at Bedretto Underground

Laboratory and FORGE Test site and show that their forecasting capabilities are very promising when

compared with other statistical models.

We also present a new three-dimensional hybrid solver for modeling induced-seismicity in fractured reser-

voirs. This is based on an equivalent continuum approach for fluid flow in fractured medium, in which fracture

are mapped onto a computational grid and translated to properties of an equivalent medium. Seismicity,

instead, is discretely modelled using an improved version of the stochastic SEED model. Overall and unlike

previous similar models, here we can: i) Discriminate between seismic and aseismic deformations, ii) Assume

a linear-weakening constitutive law for seed failure points and consistently a re-triggering mechanism (re-

peater earthquakes) based on local slip accumulation and iii) Introduce earthquake-earthquake elastic-stress

transfer. We finally present some preliminary results associated with the 2022 16A stimulation at FORGE

test site.

1 Introduction

Injection of fluids in fractured reservoirs triggers seismicity, as documented in many field injection experiments

(Healy et al., 1968; Ellsworth, 2013; Zoback and Harjes, 1997; Grigoli et al. , 2017). The capability of

forecasting human-induced seismic events prior to fluid injection is challenging due to the occurrence of

many coupled and non-linear physical processes at depth. The time scales associated with these processes

complicate further the picture: pore-fluid diffusion in a fractured reservoir may occur over time scales of days

or months depending on the in-situ hydraulic properties of the medium, while transient energy dissipation

associated with localized deformations can occur over a time scale ranging from a few seconds, in case of

induced earthquakes, up to several months, in the case of slow aseismic slip.

Theoretical and numerical models have been developed and are still being developed by many research

groups worldwide. Their goal is to get insight into these complex physical processes and provide suggestions

that may help operators to design injection experiments and ultimately forecast seismicity with some confi-

dence. The unsuccessful examples of injection-induced significant earthquakes of Basel (2006) (Deichmann

and Giardini, 2009) and Pohang (2017) (Grigoli et al. , 2018) have further raised the importance of having

reliable models so as to avoid that similar projects could potentially be terminated again in the future.

Within the Adaptive Traffic Light System (ATLS) approach, a data-driven seismic risk mitigation tool

(Grigoli et al. , 2017; Mignan et al., 2017), induced-seismicity should be forecasted in real-time or pseudo real-

time based on continuously acquired data, in order to adapt seismic hazard and risk calculation and assess

in real time the safety of the future injection operations and/or modulate these latter to reduce the risk. A

challenge of the ATLS is related to the forecasting performance of the adopted model(s). Generally speaking,

the more complex the model, the larger the computational cost associated with it. Pure physics-based models

that account for all the coupled physical processes are very reliable yet computationally expensive and with

many parameters to calibrate. Restricting here to hydro-mechanical (HM) models, the numerical resolution

of quasi-static or dynamic balance of elastic momentum in the reservoir is by far the most expensive oper-

ation due to its highly non-linear coupling with pore-fluid propagation and possible weakening mechanisms.

Although the computing power is continuously increasing in time, with the processing power of computers

that doubles every two years (Moore’s law), the feasibility of reliably calibrating pure physics-based models
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for real-time or pseudo real-time forecasting of seismicity is still limited if not impossible. Hybrid models,

which are partially physics-based and partially statistical-based, are instead more attractive for ATLS-type

approaches due to their lower computational cost. The balance of elastic momentum in these models is

replaced by a stochastic model for deformations, resulting in a faster forecasting of seismicity (if any).

Over the past years, several hybrid models for forecasting induced-seismicity have been proposed (see

Bechmann et al. (2012); Gischig andWiemer (2013); Goertz-Allmann andWiemer (2013); Rinaldi and Nespoli

(2017); Zbinden et al. (2020); Karvounis and Wiemer (2022); Ritz et al. (2022) to cite a few). Despite these

numerous efforts, some of their assumptions limit their applicability and could be extended to better model

the physical processes, while keeping their complexity low. In this deliverable, we present a new developed

suite of hybrid models that are geared towards a fast and reliable forecasting of seismicity for real-time or

pseudo real-time applications. In the first part of this deliverable, we present two simplified hydro-mechanical

hybrid models and their applications to BedrettoLab (Bedretto Underground Laboratory for Geosciences and

Geoenergies) and Utah FORGE injection experiments. We then move on to a more complex 3-dimensional

hybrid model that accounts for a network of pre-existing fractures, that could be used for verification or to

construct synthetic datasets.

2 One-Dimensional hybrid hydro-mechanical models

We developed a suite of simplified hybrid hydro-mechanical models driven by the need of hybrid solvers

that can efficiently forecast fluid-driven seismicity for real-time applications. These models couple linear and

non-linear pore-fluid propagation in a reservoir with stochastic or analytical model for seismicity nucleation.

The coupling is only one-way, in a sense that pore-fluid perturbation affects seismicity nucleation but not

vice-versa.

In this class of models, we assume axis-symmetric pore-fluid diffusion from vertical injection wellbore in

a bounded reservoir of thickness h. The fluid mass conservation equation in terms of pore-fluid pressure p

can be written in radial coordinates as

ρS
∂ (p− po)

∂t
+

1

r

∂

∂r

(
ρ · k · r

µ

∂ (p− po)

∂r

)
= Q, (1)

where ρ is the fluid density
[
ML−3

]
, µ is the kinematic fluid viscosity

[
ML−1T−1

]
, k is the permeability of

the medium
[
L2
]
, S = ϕβ

[
M−1L1T 2

]
is a storage coefficient that combines fluid and pore compressibilities

β as well as porosity ϕ, and Q is a source term representative of point injection at a given mass rate per unit

volume
[
MT−1L−3

]
. Depending on whether the permeability of the medium is a constant quantity or evolves

as function of local pore-fluid pressure, Equation (1) can be either a linear or non-linear partial differential

equation for the unknown pore-pressure field p(r, t). Its resolution may thus be obtained analytically or

numerically.

We have developed two hybrid models that account for both scenarios and will present in the following

sections: HM0 that is based on linear pore-fluid diffusion in the medium and is suited when large non-

linearities do not arise upon fluid injection at depth; and HM1 that is devised to account for non-linearities

that may arise when large quantities of fluid are injected into a fractured reservoir In both HM0 and HM1

model, fluid-driven seismicity can be modelled using either a stochastic approach (seed model) or an analytical

simplified solution. In the following section, we present further details.

2.1 HM0/1

In the first simplified hybrid model (HM0), we assume that all the fluid and medium scalar properties are

constant. Using appropriate initial and boundary conditions, Equation (1) can be solved analytically for the

spatial-temporal evolution of pore-fluid pressure p(r, t) along the radial distance r. The analytical solution,
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known as Theis’ solution, reads

p (r, t)− po (r) = − µ

4πkh

 Nj∑
j=1

∆qjEi

(
− r2µS

4k(t− tj)

) , (2)

where Ei is the Exponential integral function. Note that pore-pressure solution is given by the superimpo-

sition of analytical solutions associated with each increment of injection rate ∆qj and elapsed time t − tj

(from each change of injection condition). The analytical pore-pressure distribution at current time t+ 1 is

then used to evaluate stochastically the seismicity (either using the seed model or via the CAPS analytical

solution - see below).

The second simplified hybrid model (HM1) accounts for non-linear pore-fluid propagation in the reservoir.

Laboratory and field experiments have shown that injection of fluids in fractured reservoir leads to localized

elastic and inleastic deformations along pre-existing geological discontinuities (i.e. fractures/faults). These

mechanically-induced deformations do affect pore-fluid propagation. Shear-induced dilatancy, for instance,

is manifested with an increment of hydraulic fractures aperture based on local shear deformations, and thus

an increment of permeability. According to the cubic law, which is commonly used for modeling fracture

transmissibility, as permeability enhancement scales quadratically with fracture aperture. It is reasonable to

think, therefore, that such a non-linear dependency does affect pore-fluid propagation and hence seismicity

nucleation.

In this model, we consider a pressure-dependent permeability and re-write Equation (1) as:

ρS
∂ (p− po)

∂t
+

1

r

∂

∂r

(
ρ · k (p) · r

µ

∂ (p− po)

∂r

)
= Q (3)

According to the cubic law, the permeability of a fractured medium reads

k (p) =
w2

h (p)

12
, (4)

where wh is the fractures aperture that depend on local increase of pore-fluid pressure via the Barton-Bandis

model (Barton et al., 1985):

wh (p) = ao −
σ′
n

Kn +
σ′
n

ao−ar

(5)

with ao and ar being the aperture at zero effective normal stress σ′
n = σn−p and its residual value respectively,

and Kn the fracture normal stiffness.

Using a finite difference scheme for spatial discretization together with a Backward Euler time integration,

Equation (3) reduces to a linear system of equations in the form

A · pt+1 = b, (6)

which can be readily solved for the current radial pore-fluid pressure distribution. A and b are respectively the

finite difference (sparse) matrix and the right-hand side vector that includes the injection boundary condition.

The current pore-pressure field is then given to one of the following pressure-based seismicity model.

SEED model The first seismicity model follows the seed model approach introduced by Goertz-Allmann

and Wiemer (2013) and Gischig and Wiemer (2013). Here, seed points are potential earthquakes that are

randomly placed in space. Stress conditions and friction properties fluctuating in a random manner from

the average stress field are assigned to each seed. Using Mohr-Coulomb yielding criterion, a failure pressure

pf is calculated for each of the seeds and evaluated with the current pressure solution at each distance from

injection point, through the following equation:

pf = c/f + σ′
n − τ/f (7)
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where c is the cohesion, f the friction coefficient, σ′
n the effective normal stress, and τ the shear stress. If the

difference between the transient fluid pressure at the seed and its failure pressure is positive, an earthquake

is triggered and a drop in shear stress ∆τ is applied.

Converting Any Pressure Solution to Seismicity (CAPS) The other pressure-based seismicity model

is based on an analytical stochastic approach that also accounts for the Mohr-Coulomb failure criterion.

Assuming that the rock strength parameters (i.e. friction coefficient and cohesion) are constant and in-situ

principal stresses are normally distributed, with mean values equal to the measured values and an associated

standard deviation σ, the total tractions along the critical orientation1

θc = π/4 + ArcTan (f) /2 (8)

can be obtained as

σn =
1

2
(σ1 + σ3) +

1

2
(σ1 − σ3) cos (2θc)

τ =
1

2
(σ1 − σ3) sin (2θc)

(9)

The in-situ effective normal stress is then given by σ′
n = σn − ph, where ph is the hydro-static pressure.

σn and τ in (9) are two scalars that are evaluated analytically and they are normally distributed due to

their dependence on σ1 and σ3. We use these normal distributions to compute the analytical Cumulative

Density Function (CDF) and Probability Density Function (PDF) of hypocenters being reactivated at a

certain pressure pf (obtained from (7)), considering the hydrostatic conditions at each radius. The standard

deviation associated with pf is given by

σpf
=

√√√√
σ2
σ1

(
1 + cos (2θc)− sin(2θc)

µ

)2
4

+ σ2
σ3

(
1− cos (2θc)− sin(2θc)

µ

)2
4

(10)

2.2 HM0/1 verification and seismicity models’ comparison

In this section, we verify the implemented numerical fluid flow solution with synthetic data comparing it to the

exact analytical solution (Theis’ solution) in equation 2 in subsection 2.2.1 and we compare the performance

of both the CAPS and seed models using the same synthetic dataset in subsection 2.2.2.

2.2.1 Numerical flow model verification

We show one test based on the synthetic injection flow rate given in Figure 1 panel a). Here, fluid is injected

into a 8-m open borehole interval (see simulation parameters in Table 1) following a step-wise increasing

injection strategy. The injected flow rate is increased every two hours starting 120 minutes after initiating

the simulation until shut-in 10.5 hours after the injection operation started. We implement a non-uniform

spatial discretization with logarithmically increasing spacing between the nodes (101 nodes, 100 elements)

with increasing distance form the injection point. Further, we assume a constant hydro-static pressure

condition and no-flux boundary conditions (neither at the point of injection nor at the far field, at 1000

meters from the point of injection). Using further parameters listed in Table 1, the results of the flow models

are shown in Fig. 1.

Fig. 1 panel a) shows the injection protocol as well as the three pressure solutions (HM0 analytical, HM0

numerical, and HM1 solutions) at the point closest to injection, panels b)-f) and c)-g) shows the time and

spatial profiles for the HM0 and HM1 pressure solutions, respectively. The temporal and spatial behavior

of the non-linear pressure solution varies with respect to the linear solutions according to the additional

hydraulic parameters introduced to account for variability in the permeability parameter. Both the analytical

and numerical approaches to solve the linear pressure solution match quite well, as it is shown in panels b)

1Note that we use only one value of critical orientation and neglect its conjugate. This is because all the shear tractions are
assumed to be positive (i.e. σ1 > σ3).
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Table 1: Input parameters for synthetic test.

Symbol Description Value

Hydraulic properties
kf Permeability (const. for HM0) 5 · 10−15

[
m2
]

S Storage 10−11 [1/Pa]
µ Fluid kinematic viscosity 10−3 [Pa · s]
ϕ Porosity 4.2 · 10−2 [−]
h Interval thickness 8 [m]

HM1
σn Normal stress 21 [MPa]
Kn Fracture normal stiffness 1014 [Pa/m]
ao Aperture at zero eff. normal stress 8 · 10−4 [m]
ar Residual aperture 10−8 [m]

Geomechanical properties
σ1 Maximum principal stress 26 [MPa]
σ3 Minimum principal stress 15 [MPa]
σσ1

Standard deviation of σ1 10%σ1 [MPa]
σσ3 Standard deviation of σ3 10%σ3 [MPa]
c Cohesion 2 [MPa]
f Friction coefficient 0.6 [−]

In-situ conditions
ph Hydro-static pressure 11.6 [MPa]

Simulation parameters
tinit Initial time 0. [h]
tend End time 20.5 [h]
tshut Shut-in time 12. [h]
∆t Time step 1. [min]

Seed density variable [−]

and f) in Figure 1 where the analytical solution is plotted on top of the numerical solution for five different

points in space and moments in time. Also, panel d) shows that the relative error in pressure is lower than

10% for most times until shut-in, although it increases considerably at larger distances from the injection

point (panel e)).

2.2.2 Synthetic model to compare the CAPS and seed models’ performance

We use the same synthetic model as in the previous subsection to simulate the seismicity using both seismicity

models described in section 2.1. The flow and seismicity models are sequentially coupled. Hereby, the pressure

changes computed in the flow model (here we use Theis’ solution) affect the seismicity model but the triggered

seismicity does not change the pressure solution (e.g. via permeability increase) for the next time step. Along

with the pressure solution we input the geomechanical parameters listed in Table 1 to simulate seismicity

during the 20.5-hour simulation, as it is shown in Figure 2. We perform three simulations with increasing

number of seeds in space (panels b)-d)) and see that the seed model matches the CAPS model better if the

number of seeds is high enough. It is important to note that for the synthetic results presented in Figure 2,

no re-triggering of seeds was considered (the seeds are only allowed to trigger once, then they are discarded)

and only one simulation was performed for each change in seed number, providing a deterministic result in

terms of seismicity rate.

2.3 Application to BULGG

We apply the hybrid models described in section 2.1 to the first collected dataset of a full-scale hydraulic

stimulation performed in November 2020 at the Bedretto Underground Laboratory for Geoenergies and
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a)

b)

c)

d)

f)

g)

e)

H
M
0

H
M
1

Figure 1: Visualization of the different pressure solutions discussed in section 2.1 following the synthetic
injection flow rate in blue in panel a), which also shows the pressure evolution in time at the point of
injection for Theis’ analytical solution (red scatter points), the HM0 numerical solution (light blue), and the
HM1 solution (purple). The spatial and temporal evolution of the pressure solutions for five different points in
space and time moments, respectively, are shown in panels b) and f) for the HM0 class (the analytical solution
as red scatter points on top of the numerical solution) and in panels c) and g) for the HM1 solution. Panel
d) shows the relative error (in percentage) of the numerical solution (HM0) w.r.t. the analytical solution in
time for the point closest to injection. Panel e) shows the same but in terms of distance from the injection
point for three different time moments.

Geosciences (BULGG)2. The hydraulic and seismic datasets presented in Figure 3 were collected during an

approximate 34-hour-long injection operation into a 8.5 meter open interval section located at roughly 1270

meters above sea level. The observed magnitude range shows mainly picoseismic events (-5 < Mw < -2),

with just 5 microseismic events (-2 < Mw < 2) out of a total of 383 recorded events.

2.3.1 History matching and seismicity forecast

As a first step towards evaluating the forecasting performance of these 1-D hybrid models, we split both

the hydraulic and the seismic datasets in two phases: the training (or fitting) phase and the forecasting (or

validation) phase, marked as number one and two in Figure 4 - panels (a-b). As mentioned before, the flow

and seismicity models are sequentially coupled. During the training phase, the flow model is fed with the

injected flow rate (blue continuous line in Figure 4) and with the known hydraulic parameters. Via inverse

modelling, we calibrate for a selection of unknown or uncertain hydraulic parameters and fit the observed

pressure (red continuous line in Figure 4) to the computed pressure solution. We optimize our pressure

solution using the Differential Evolutionary Algorithm (DEA, Storn and Price, 1997), a global optimization

algorithm that finds the optimal parameters within a pre-defined uncertainty range minimizing a tailor-made

cost function. Then, the fitted pressure solution serves as an input to the seismicity model along with the

observed seismicity (Fig.3-b)). The solution in terms of seismicity rate (Fig. 4) is fitted to the observations

while calibrating for geomechanical parameters within a pre-defined uncertainty range. Once the pressure

and seismicity solutions are fitted to the observations for the duration of the training phase (here the first 15

hours from injection), the calibrated parameters are used to issue a forecast for the upcoming time in terms

of a pressure and seismicity rate based on the flow rate in the validation phase.

2BULGG is an underground research laboratory located in Bedretto (Ticino), Switzerland (http://www.bedrettolab.ethz.
ch/en/home/)
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a)

b)

c)

d)

1500 seeds

15000 seeds

150000 seeds

Figure 2: Visualization of the seismicity models’ performance based on the analytical pressure solution (Theis’
solution; red in panel a) and same as red scatters in Figure 1 panel a)) from the synthetic injection flow rate
(blue in panel a) and same as in Figure 1 panel a)). Panels b)-d) compare how the CAPS (orange) and seed
model (green) perform with increasing number of seeds.

Bedretto November 2020

Figure 3: Bedretto November 2020 hydraulic stimulation raw data: a) Injection flow rate (blue) and recorded
pressure (red). b) Seismicity rate (events per hour) and events with time, distance, and magnitude (colorbar).
c) Frequency-magnitude distribution of all earthquakes in the catalog. d) Spatial distribution of the seismic
events in the targeted volume.
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1. Training / Fitting 2. Forecast / Validation

History matching and seismicity forecast

N-Test

Model comparison

a)

b)

c)

e)

d)

f)

g)

h)

Figure 4: Application of all four hybrid models to the Bedretto dataset: a) Injected flow rate along with the
observed pressure and the pressure solutions for HM0/1. b) Observed seismicity rate along with fitted (1.
Training / Fitting) and forecasted (2. Forecast / Validation) seismicity. c)-f) N-Test for the time moment
marked in b) for the four models. g) Cumulative log-likelihood value for the four models throughout the
validation phase. h) Same as g) but for the cumulative probability gain (PG).

2.3.2 Uncertainties estimation and model simulations

As it is currently implemented, the seed model accounts for its parameters’ uncertainties by randomly assign-

ing different failure pressure limits to the distributed seeds sampling from a normal distribution with mean

and standard deviation in accordance to pre-defined background stress conditions and friction properties.

We run a multiple number of simulations Nsim to issue probabilistic forecasts (distribution of possible seis-

micity rate solutions). The analytical model is deterministic and therefore produces a single forecast based

on the optimal parameters. We account for the model parameters uncertainties by sampling Nsim times

from normal distributions of selected parameters (e.g. standard deviations of the principal stresses) whose

mean corresponds to their optimal value and standard deviations are fixed. By running a certain number of

simulations we are able to issue multiple synthetic catalogs and account for the uncertainties of the model

parameters making the models probabilistic, as shown in Fig. 4 b) dashed lines for the median and shaded

area for the 95% confidence interval (CI) of the distribution for the different model classes.

2.3.3 Testing

In order to assess how the model actually performs, we check how well the forecasted seismicity rate distribu-

tion matches the observations during the validation phase (Zechar et al., 2010). Kagan and Jackson (1995)

introduced the N-Test, which assigns probabilities to each seismicity rate bin according to its distribution for

a given time interval of the validation phase. This is shown in Fig. 4 panels (c) and (f) for the four different

model combinations at the time moment marked with a red rectangle in Fig. 4-b in the validation phase,

where the histogram shows the probability density distribution of the seismicity rate, the dashed vertical line

its median, and the vertical straight line the observed seismicity.

The N-Test is defined such that a model passes it if the observed seismicity lies within the 95% CI of

the forecasted probability density distribution for a given time interval. For the time moment shown in the

mid panels in Fig. 4-c-f, the HM0 CAPS model would be the only one to fail the test, while the HM1 CAPS

would be the better performing model since its probability to reproduce the observed rate is highest (0.34).
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Figure 5: Heatmap showing the cumulative PG of each model against each other (the rows serving as null
models) towards the end of the validation phase with red showing high values of PG.

2.3.4 Model comparison

The term probability gain (PG) is introduced as a measure of forecasting performance of a model against

another model. Based on the approach of Kagan and Knopoff (1987), who proposed to calculate the PG

as the difference between the log-likelihood of two given statistical models, Passarelli et al. (2010) proposed

to assess the forecasting performance of any model (accounting not only for statistical models) by directly

computing the probability of forecasting the observed rates and compare them via PG, which is simply

calculated as the difference of the “likelihoods” of the probability of two models

PG =
(
lA(θ̂ | Hf )− lB(θ̂ | Hf )

)
/ ln(2) (11)

where the li of model i (with i being e.g. model A or B) is calculated by taking the natural logarithm of the

probability for the model i to reproduce the observed (future) seismicity rate, Hf , for a given time interval

li

(
θ̂ | Hf

)
= ln

(
Pr
(
model i | θ̂, Hf

))
(12)

where θ̂ represents the optimal choice for the model parameters.

Fig. 4-g shows the cumulative of Eq. (12) for all model combinations and Fig. 4-h shows the cumulative

of Eq. 11 taking the HM0 CAPS model as reference model (or null-model). Then, if we want to know

which model actually performs better (on average) throughout the full validation phase, we can compute

the cumulative PG at the end of the validation phase for all possible combinations of models for A and

B in Eq. 11 and represent it as a heatmap, as shown in Fig. 5. Therefore, although HM1 CAPS is the

better performing model for the time moment shown in the red rectangle in Fig. 4 b) and in the N-Test, the

HM1 SEED model is the overall better performing model since its cumulative PG is always positive against

any other model (see Fig. 5).

2.4 Application to FORGE 2019 stimulation

Before the April 2022 injection experiment at FORGE test site, a team was asked to perform an a-priori risk

assessment. In order to provide synthetic seismic data for the risk assessment, we generated a set of catalogs

using the HM0-Seed hybrid model previously described. Notably, we calibrated the model parameters using

the available injection and seismic data of the 2019 stimulation at the vertical well 58-32 (intervals 1, 2

and 3). In Figure 6, we report the comparison between the model results and the observed data, for both

wellhead pressure (left) and cumulative number of events above the magnitude of completeness Mc (with 20

stochastic realizations). We can observe that the hybrid model fits reasonably well the observed pressure,

despite the use of a hydraulic model with no permeability changes (HM0). Some discrepancies are visible

for the rate of seismicity, although the final number of simulated events is similar to observations. Using the

fitted parameters (cohesion, friction coefficient, stress drop coefficient and seed density), we ran a forward

forecasting of seismicity using the planned injection protocol of the 2022 stimulation (although the actual

stimulation protocol deviated from the planned one) and generated 100 catalogs. The resulting forward
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Figure 6: Top: Comparison between observations and model fit results for wellhead pressure (left) and
cumulative number of events (right) at FORGE. The model used is HM0-Seed. Bottom: Injection strategy
used for forecasting events (left) and cumulative number of events for the generated 100 catalogs (right).

model resulted in total number of events between 200 and 500, given the assumed injection plan.

3 Three-Dimensional hydro-mechanical hybrid model

We now present a newly developed hybrid hydro-mechanical 3D model that account for non-linear pore-fluid

propagation in fractured reservoir and seismicity nucleation. Before doing that, we describe the reasons that

have brought us to develop from scratch this solver.

As mentioned in the DEEP proposal, the original plan was to enhance the current version of an in-

house developed hybrid solver called HFR-Sim, with the ultimate goal of embedding it into the ATLS chain.

Although it was in principle doable, we found out that such a solver is not really suitable for modelling

injection-induced seismicity in the FORGE injection experiments. In the following section, we present several

tests we have performed with HFR-Sim and highlight the associated problems.

3.1 HFR-Sim tests

HFR-Sim is a 3D hybrid numerical solver devised for modelling fluid induced seismicity. It includes a

deterministic module for transient pore-pressure evolution in a fractured rock mass based on an adaptive

Hierarchical Fracture Representation (a-HFR) (Karvounis and Wiemer, 2022). Fractures are explicitly mod-

elled and are characterized by constant hydraulic properties (constant permeability and aperture). Linear

single-phase fluid flow in fractures and solid mass is numerically solved using a Finite Volume scheme together

with a Backward Euler time integration method. Seismicity, instead, is modelled using the seed model, which

is the same as the one described above with the only difference that the full 3D stress tensor formulation is

taken into account (see Karvounis and Wiemer, 2022, for full details).
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Figure 7: Comparison between observed (dark blue) and calibrated (light blue) wellhead pressure using HFR-
Sim and the dataset of the April 2019 FORGE stimulation.

Due to the lack of verification tests for the fluid flow solver, we ran a number of simulations to check

the accuracy of the numerical solver. To do so, we first removed the Paceman well model and introduced

the simpler point source type of injection. We then ran the following verification tests: i) steady-state pore-

pressure variation in a 3D homogenous unfractured medium and ii) point injection at constant volumetric rate

in a 3D homogenous unfractured medium, for different mesh discretizations (to check the mesh-dependency

problem that was found to be present with Paceman well model). Upon fixing a convergence problem in the

iterative solution of the governing system of equations, we obtained a good match between numerical and

corresponding analytical solution (see their expression in Carslaw and Jaeger, 1959).

We then created a model for the 2019 stimulation at FORGE Test site. Notably, we developed an ad-hoc

3-dimensional discrete fracture network generator for HFR-Sim and created a Discrete Fracture Network

representative of the FORGE test site (based on the available FMI logs data). We manually calibrated the

model parameters using the hydraulic and seismic data of the 2019 stimulation (see Figure 7), and ran a

forward forecast of seismicity based on the injection data of the 2022 stimulation. Although the calibration

was quite successful (shut-in phase excluded), the forecasting was clearly not, with an unphysical pore fluid

over-pressure near injection point and the nucleation of a large number of seismic events (more than 20×103).

This is because the injected volumes over the time scales of injections are very different between the 2019 and

2022 stimulations (at least of one order of magnitude), as reported in the first DEEP annual meeting. The

model linearity and thus the lack of inelastic changes of DFN permeability with local pore-pressure during

continuous injection leads to such unphysical hydro-mechanical response. This is also strengthened by the

evidence that the 2022 stimulation was a hydraulic fracturing type of stimulation, with a pressure response

of stage 3 that clearly suggest the nucleation and propagation of a penny-shape crack (which then triggered

other events due to its interaction with pre-existing fractures). The permeability of an hydraulic fracture is

strongly non-linear due to its cubic dependency on fracture aperture (cubic law). Being able to capture this

non-linear phenomenon is extremely important and with the current version of HFR-Sim this is not possible

to achieve. The inclusion of non-linear permeability changes in such a model is not trivial, since a non-linear

solver must be implemented for the implicit solution of spatial and temporal evolution of pore-fluid pressure.

This would require a complete change of code architecture, which - in the end - would lead to a re-write of

the whole flow solver.

These considerations have brought us to develop a new hybrid solver for induced-seismicity forecasting

in fractured rock masses that extend previous similar solvers. In the following sections, we present it and

showcase its preliminary application to the FORGE 2022 stimulation.
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3.2 HMStat: a new 3D hybrid model for verification and generation of synthetic

data-sets

3.2.1 Equivalent Continuum Model for flow in fractured porous media

We adopt a single continuum approach to represent fractures in the porous medium, geared towards a

fast approach that can forecast injection-induced seismicity driven by pore-fluid propagation in a naturally

fractured reservoir. Notably, we adopt an Equivalent Continuum Modeling approach in which fractures are

translated into properties of an equivalent porous medium. A fractured rock mass behaves similar to a

homogeneous and anisotropic porous medium if it behaves as a representative element volume (REV) (Long

et al., 1982). This means that the effective/equivalent medium properties (permeability and porosity for

instance) do not vary considerably with the reference length-scale of the system, although this condition might

not always be satisfied due to the lack of scale separation in natural fractured systems (Berre et al., 2019).

This approach has been widely used in literature and numerous studies have shown that the representation of

a discrete fracture network with a sufficiently resolved grid of equivalent continuum blocks allows to reproduce

well its percolation behaviour that would be obtained with discrete fracture network conceptual models (e.g.

Jackson et al., 2000; Svensson, 2001; Leung et al., 2012; Hadgu et al., 2017; Sweeney et al., 2020; Kottwitz

et al., 2021)).

Assuming that there exist a REV for a three-dimensional naturally fractured rock mass, single-phase

isothermal fluid flow at the continuum scale is governed by the fluid mass conservation equation

∂ (ρ⟨ϕ⟩)
∂t

+∇ · (ρ⟨v⟩) = qδ (xinj , yinj , zinj , t) , (13)

where ϕ is the unitless rock porosity [−], ρ is the fluid density
[
ML−3

]
, q is a source term (mass rate per

unit volume) representative of an injection at point (xinj , yinj , zinj) and v is the average fluid flux given by

Darcy’s law

⟨v⟩ = −⟨K
µ
∇ (p− po)⟩ (14)

In Equation (14), K is the permeability tensor
[
L2
]
, µ is the (constant) dynamic fluid viscosity

[
ML−1T−1

]
and p̄ (x, y, z, t) = p (x, y, z, t)−po (x, y, z) is the pore-fluid over-pressure with respect to the initial (ambient)

value po. Note that gravity is neglected and the angular brackets ⟨·⟩ denote the average quantity over a

suitable rock volume that contains fractures and porous matrix. This volume can be either the entire fracture

system volume or the grid block used in the computational domain (Berre et al., 2019). In our approach,

we assume that the rock mass properties (permeability and porosity) are averaged over the simulation grid

block and define these properties as equivalent grid-block properties in line with the nomenclature given by

Durlofsky (1991). These quantities are distributed heterogeneously in the medium and mimic the presence of

a discrete fracture network. One of the most crucial aspect of the single continuum-based approach is thus the

capability of the equivalent grid-block properties to reflect the anisotropic flow at the scale of the continuum

cells. Several techniques have been proposed in the literature to generate equivalent continuum models of

discrete fracture network, both in 2D (Samardzioska and Popov, 2005; Botros et al., 2008; Reeves et al., 2008;

Rutqvist et al., 2013; Chen et al., 2015; Gan and Elsworth, 2016) and in 3D (Lee et al., 2002a; Hadgu et al.,

2017; Sweeney et al., 2020). The so called Oda’s crack tensor theory (Oda, 1986) is perhaps the most widely

used due to its simplicity and is adopted in our approach as well. According to this theory, fractures are

considered as disk-shaped entities embedded in a 3D grid domain. A grid cell (or block) that is intersected by

one fracture is assigned a permeability tensor that is aligned with the orientation of the intersecting fracture.

For multiple fractures intersection, the permeability tensors associated with each fracture are summed up,

leading to a unique positive definite symmetric tensor for the fractured cell. Mathematically, this translates

to

kij =
1

12

1

V e

Nf∑
f=1

Af
(
wf

h

)3((
n̂f
kk

)2
δij − n̂f

i n̂
f
j

)
, (15)

where kij are the ij-entries of the fractured permeability tensor, Af = π
(
Rf
)2

is the area of the f -th fracture
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intersecting the cell e of volume V e, characterised by a radius Rf , hydraulic aperture wf
h and orthonormal

vector n̂f that identifies uniquely its orientation in the 3D domain. Note that the permeability tensor arising

from (15) is very similar to the one proposed by Chen et al. (1999), with the fracture coordinate transformation

tensor that is exactly the same in both approaches. Note also that when a fracture orientation is not aligned

with the grid directions, the permeability tensor of fractured grid blocks is dense and anisotropic.

Following the work of Hadgu et al. (2017) and Sweeney et al. (2020), the equivalent porosity for a fractured

grid-block is defined as

ϕ =

Nf∑
f=1

V f

V e
, (16)

where V f = Afwf
h is the volume of fracture f in cell e and the summation is still defined over all the fractures

intersecting that cell.

It is worth mentioning that this equivalent continuum modeling approach is based on two fundamental

assumptions: i) the element volume over which the equivalent properties are calculated must be a REV and ii)

that fluid flow occurs only within the discrete fracture network, i.e. the matrix permeability is much smaller

than the ones of pre-existing fractures. In order to fulfill the second assumption, in this contribution we

assume that the permeability tensor of the unfractured grid-blocks (denoted by a superscript ∗) is isotropic

and given by

k∗ij = kmδij , (17)

where δ is the Kronecker delta and km is the matrix permeability value that is always much lower than any

kij . As far as the matrix rock porosity ϕ∗ is concerned, a typical value for low permeability rocks, such as

granite, is assigned to each unfractured grid block.

In an event of fluid injection in deep and highly fractured rock masses, the fractures that act as major

conduits for pore-fluid propagation experience changes in permeability due to local changes of effective normal

stresses, as supported by many laboratory studies (e.g. Brace, 1978, 1980; Huenges andWill, 1989). In order to

comply with this non-linear process, we assume that the equivalent permeability tensor of fractured elements

changes with average local effective normal stress as

kij = kij +∆k, (18)

where the increment of permeability ∆k is calculated using the effective stress-dependent permeability law

introduced by Rice (1992) (written in incremental form)

∆k = k∗e
−⟨σ′

n,o⟩/σ∗
(
e⟨p̄⟩/σ∗ − 1

)
(19)

In equation (19), σ∗
[
ML−1T−2

]
is a normalizing stress constant that ranges between 10 and 40 MPa (with

low values that correlate with high fracture intensity), k∗
[
L2
]
is the maximum value of permeability and

⟨σ′
n,o⟩ = ⟨σn − po⟩ is the average initial effective normal stress in the fractured cell (with the average total

normal stress obtained by projecting the far-field stress tensor onto each fracture plane intersecting the grid

cell and then taking the mean value). Note that when the pore-fluid over-pressure p̄ is null, ∆k = 0 and the

equivalent permeability tensor for the fractured grid-block is given by (15). On the contrary, when p̄ ̸= 0,

the increment ∆k is applied to the full equivalent permeability tensor, leading to a non-linear pore-fluid

propagation in the fractured rock mass.

3.2.2 Stochastic modeling of injection-induced seismicity

We now present the stochastic modeling approach for seismicity nucleation in a fractured rock mass subjected

to fluid injection. This approach consists in distributing stochastically weak failure points in the fractured

domain, similarly to what has been done in many previous contributions (e.g. Rothert and Shapiro, 2003;

Bechmann et al., 2012; Goertz-Allmann and Wiemer, 2013; Gischig and Wiemer, 2013; Rinaldi and Nespoli,

2017; Zbinden et al., 2020; Haagenson and Rajaram, 2021; Karvounis and Wiemer, 2022; Ritz et al., 2022,

to cite a few). These weak points represent the center locations of potential seismogenic patches/asperities,
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on which seismic deformations may localized if local pore-fluid pressure reaches a critical value. The discrete

fracture network in the rock mass, therefore, contributes only to the anisotropic pore-fluid propagation and

the conservation of the elastic momentum in the medium is not considered. This is the key characteristic of

this hybrid model for injection-induced seismicity: the elastic equilibrium of the fractured rock mass, whose

resolution is very expensive computationally, is replaced by a stochastic distribution of weak failure points

whose activation strictly depends on the (physic-based) spatial-temporal evolution of pore-fluid pressure.

Note that these weak failure points are essentially the seeds points previously introduced in the SEED model,

i.e. potential locations of earthquakes. Here, however, we refer to them as weak failure points due to their

constitutive rupture model that will be presented in the following.

3.2.3 Stress state and weak failure points distribution in the fractured rock mass

Let us consider a fractured rock mass with a set of pre-existing inter-connected fractures/faults in the R3

Euclidean space with canonical global basis êx = (1, 0, 0), êy = (0, 1, 0) and êz = (0, 0, 1) and reference

origin O = (0, 0, 0). The fracture network can be stochastically generated (i.e. positions, orientations and

dimensions can be generated using appropriate probability distributions) or can be obtained from out-crop

and/or core testing data. We further assume that each pre-existing fracture f is disk-shaped, with a given

radius Rf and hydraulic aperture wf
h, and is uniquely identified in the Euclidean space by a centre point

Cf =
(
xf , yf , zf

)
and an orthonormal vector n̂f (with its origin in Cf ). The fractured rock mass is subjected

to a depth-dependent far-field principal stress state, characterized by a vertical principal component σv (z)

and two horizontal principal components σH (z) and σh (z) (with σH > σh). Their values are typically

estimated from deep hydraulic injection tests, with a certain degree of uncertainty that is always present

during measurement operations (Cornet and Valette, 1984). In order to take that into account, the principal

stress components are sampled from a normal distribution, with a depth average value taken from in-situ

stress estimates and a certain standard deviation σ, i.e.

⟨σv(z)⟩ ∼ N (σv,meas (z) , σ)

⟨σH(z)⟩ ∼ N (σH,meas (z) , σ)

⟨σh(z)⟩ ∼ N (σh,meas (z) , σ)

(20)

The principal stress tensor Σp, whose diagonal entries are given by (20), is then projected onto the geographic

coordinate system north − east − down (which is assumed to coincide with the coordinate system x, y, z

identified by the canonical basis {êx, êy, êz} and origin O) via the following linear transformation

Σg = RT
pgΣpRpg, (21)

where

Rpg =

 cos(α)cos(β) sin(α)cos(β) −sin(β)

cos(α)sin(β)sin(γ)− sin(α)cos(γ) sin(α)sin(β)sin(γ) + cos(α)cos(γ) cos(β)sin(γ)

cos(α)sin(β)cos(γ) + sin(α)sin(γ) sin(α)sin(β)cos(γ)− cos(α)sin(γ) cos(β)cos(γ)


is a rotation matrix that includes the cosines of the director angles α, β and γ (see Zoback (2010) for

more details).

Unlike previous contributions where weak failure points are uniformly distributed in the simulation do-

main, which - in almost all the cases - does not even include pre-existing fractures/faults to account for fluid

flow anisotropy (e.g. (Goertz-Allmann et al., 2011; Bechmann et al., 2012; Gischig and Wiemer, 2013; Rinaldi

and Nespoli, 2017)), here we distribute the weak points only along the pre-existing fractures in the rock mass

(see Figure 8). This is because deformations, if they occur, are expected to be localized along patches of the

discrete fracture network and not within the intact rock matrix. A set of weak points per fracture is thus
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Figure 8: Distribution of weak failure points along pre-existing fractures. Cuboids intersected by the pre-
existing fractures are denoted by a green colour. The normal vector of each weak failure point is normally
distributed with an average value that is equal to the normal vector of the associated fracture.

sampled from a uniform distribution, such that the total set of discrete weak points Ωwp is given by

Ωwp =

Nf⋃
f=1

Ωf
wp, (22)

where Nf is the total number of discrete fractures and Ωf
wp is the set of weak points p̃i per fracture

Ωf
wp = {p̃f1 , p̃

f
2 , p̃

f
3 , . . . } (23)

It is worth mentioning that the total number of weak points per fracture may vary, but the density, defined

as the number of weak points per volume of fracture, is enforced to be the same. This implies that longer

fractures are seeded with more weak points compared to shorter ones.

At each weak point p̃i belonging to fracture f , we assign an orthonormal basis {ŝwp,f
1 , ŝwp,f

2 , n̂wp,f}
that identifies the patch plane on which the far-field stress tensor Σg is projected onto. Since weak points

are distributed along pre-existing fractures and represent their potential unstable patches/asperities, the

components of the normal vector n̂wp,f
i are sampled from a normal distribution, with average values equal to

the components of fracture normal vector n̂f
i , i.e. ⟨n̂

wp,f
i ⟩ ∼ N

(
n̂f
i , σ̄
)
where σ̄ is the corresponding standard

deviation. The plane orientation that crosses point p̃fi is thus similar to the corresponding fracture plane.

The two other shear orthonormal vectors, ŝwp,f
1 and ŝwp,f

2 , are instead randomly sampled from a uniform

distribution and may be oriented in any direction along the plane orthogonal to n̂wp,f .

The stress state on each weak failure points p̃fi is then simply given by

σwp,f
n = n̂wp,f

i · Σg,ij · n̂wp,f
j

τwp,f
1 = ŝwp,f

1,i · Σg,ij · n̂wp,f
j

τwp,f
2 = ŝwp,f

2,i · Σg,ij · n̂wp,f
j ,

(24)

where σwp,f
n is the normal stress component, whereas τwp,f

1 and τwp,f
2 are the two shear stress components

along ŝwp,f
1 and ŝwp,f

2 , respectively. Note that the total shear stress vector reads τwp,f = τwp,f
1 · ŝwp,f

1 +τwp,f
2 ·

ŝwp,f
2 , and its magnitude can be readily obtained as τwp,f =

∥∥τwp,f
∥∥. Note also that the first equation in

(24) is used to calculate the average total normal stress on a fractured cell in (19) (with n̂wp,f replaced by
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n̂f ).

To our knowledge, this stochasting distribution of stresses and weak failure points is unique of its kind.

A similar approach was recently adopted by Haagenson and Rajaram (2021). However, in their approach

they do not conceptually consider weak points as centroids of potentially unstable patches, as well as they

do not consider stochastic variations of the orthonormal basis associated with each weak failure point. We

believe such variations are important since they lead to a heterogeneous distribution of shear strength along

adjacent weak points of a pre-existing fracture f , similar to more sophisticated physic-based heterogeneous

models for induced seismicity (e.g Almakari et al., 2019; Jin, 2022).

3.2.4 Constitutive relations and rupture model for weak failure points

Upon fluid injection in the naturally fractured rock mass, the local reduction of effective normal stress due to

pore fluid pressurization may cause failure/activation of weak points and thus the nucleation of deformations

on potentially unstable patches centered on p̃fi . The force balance along these patches, however, ensures that

the absolute shear stress is equal to the available frictional resistance given by the Mohr-Coulomb yielding

criterion ∣∣τwp,f
∣∣− c− fc (ds) ·

(
σwp,f
n − pwp,f

o − p̄wp,f
)︸ ︷︷ ︸

∆τwp,f

≤ 0, (25)

where pwp,f
o and p̄wp,f are the in-situ pore fluid pressure and over-pressure at weak point p̃wp,f

i respectively,

c is the cohesion and fc is the friction coefficient, which is assumed to weaken linearly and irreversibly with

accumulated seismic slip ds, from a peak fp
c to a residual fr

c value over a distance dc, i.e.

fc = fr
c + w (dc − ds)H(dc − ds) (26)

with w = (fp
c − fr

c ) /dc and H (·) being the friction weakening rate and the Heaviside step function respec-

tively. The local violation of the Mohr-Coulomb criterion (25) leads to localized deformations that may

radiate seismic energy due to the weakening nature of friction coefficient. In order to assess whether a failing

patch is seismogenic or not, we adopt the following stochastic approach. For each weak failure point that

violates (25), we randomly sample a moment magnitude Mw from a truncated Gutenberg-Richter magni-

tude–frequency law (for a given relative size distribution of earthquakes or b−value). To do so, we take

advantage of the fact that the G-R law can be transformed into a Pareto distribution for scalar seismic mo-

ment M
[
ML2T−2

]
. Hence, we sample a seismic moment from the following truncated Probability Density

Function (Kagan, 2002)

ϕ (M) =
Mβ

maxM
β
min

Mβ
max −Mβ

min

βM−1−β , Mmin ≤ M ≤ Mmax (27)

where β =
2

3
b (with b being the b-value of the G-R law), andMmin andMmax are the minimum and maximum

seismic moment respectively. We then convert the seismic moment Mo into a moment magnitude Mw using

(Hanks and Kanamori, 1979)

Mw =
2

3
(Log10M − 9.05) (28)

We finally assume that the failing patch centred on p̃wp,f
i is circular-shaped and calculate the corresponding

rupture radius using the following relation (Eshelby, 1957)

Rwp,f =
3

√
7

16

M

∆τwp,f
(29)

If the rupture radius Rwp,f is larger than the characteristic nucleation patch length scale Lc associated with

p̃wp,f
i , which is approximately given by (Garagash and Germanovich, 2012)

Lc ≃
G · dc

fp
c · σwp,f

n,o

(30)
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with σwp,f
n,o and G being the in-situ effective normal stress at p̃wp,f

i and shear modulus of the medium re-

spectively, then the failing patch is seismogenic and releases seismic energy. On the contrary, if Rwp,f < Lc,

then the rupture patch is not large enough for the development of an instability and deformations are thus

aseismic. For instance, a magnitude Mw = −1 leads to a rupture radius of Rwp,f ≃ 2.5 m for a shear stress

drop of ∆τwp,f = 1 MPa, which may be larger or lower than Lc that plausibly ranges between [10−1, 101] m

(depending on the value of dc that may range between [10−4, 10−2] m (Garagash and Germanovich, 2012)).

In this rigid-plastic stochastic model, therefore, the violation of the Mohr-Coulomb yielding criterion (25)

is a necessary but not sufficient condition for seismicity nucleation. This is in agreement with the fact that

deformations that take place at depth upon fluid injection may also be aseismic (hence characterized by not

detectable seismic waves), as observed in many in-situ large scale injection campaigns (Bourouis and Bernard,

2007; Scotti and Cornet, 1994) and recent field and laboratory experiments (Guglielmini et al., 2015; Scuderi

and Collettini, 2016). Although in this contribution we do not model aseismic slip, we differentiate between

seismic and aseismic deformations for two main reasons: first, the relations (28-29) are only valid for seis-

mic sources, and second the assumption that all the triggered deformations radiate seismic energy is too

far-fetched.

For a seismogenic patch, the increment of slip associated with a constant stress drop ∆τwp,f on a circular

area Awp,f = π
(
Rwp,f

)2
can be readily obtained from Aki K. (1966) as

∆ds =
M

GAwp,f
, (31)

with the slip direction that is equal to the direction of the applied shear stress, i.e. τ̂wp,f =
τwp,f

∥τwp,f∥
, and

the associated friction coefficient drop obtained from (26). Assuming further a non-associative plastic flow

rule similar to the one proposed by Ciardo and Lecampion (2019), we can express an increment of opening

associated with shear-induced dilatancy as

∆dn = ∆ds · tan (Ψ) , (32)

where Ψ is a dilatant angle. A seismogenic weak point/patch is thus characterized by a dislocation vector

∆d = {∆ds1 ,∆ds2 ,∆dn}, where the three local components can be readily obtained as follow

∆ds1 =
∥∥∥(∆ds · τ̂wp,f

)
· ŝwp,f

1

∥∥∥
∆ds2 =

∥∥∥(∆ds · τ̂wp,f
)
· ŝwp,f

2

∥∥∥
∆dn =

∥∥∆dn · n̂wp,f
∥∥

(33)

Such dislocations alter the stress state in the fractured rock mass, potentially triggering other weak patches.

In the following section, we describe how the active seismic sources transfer elastic stresses in the medium,

together with a re-triggering mechanism for seismic repeaters.

3.2.5 Elastic stress interactions and re-triggering mechanism for partial ruptures

Several studies have shown that earthquakes interaction is an important mechanism in induced-seismicity

(e.g. (King et al., 1994; Lin and Stein, 2004)), even when the majority of the triggered events are characterised

by relatively small magnitudes (Brown and Ge, 2018). In this contribution we assume that, when the local

stress state on a generic weak failure point violates the Mohr-Coulomb yielding criterion and the resulting

failure patch is seismogenic, a source of elastic stress changes is considered. Notably, we assume that a source

seismic patch transfers elastic stress changes on all the others weak points in a quasi-static manner. When

multiple seismogenic patches are activated, multiple concurrent sources are considered.

Unlike previous works in which stress interactions are calculated using Okada, Y. (1992)’s analytical

solutions of a finite rectangular dislocation in a homogeneous, isotropic and linear elastic half-space (e.g.

King et al., 1994; Toda et al., 1998; Lin and Stein, 2004; Catalli et al., 2013, to cite a few), here we use the

analytical elastic solutions of a constant strength dislocation over a finite rectangular patch in an unbounded
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elastic medium (Shou et al., 1997). The effect of the free-surface is thus not taken into account, implying

that the modeling domain must be at sufficiently large depths where the effect of the traction free surface

becomes negligible.

Assuming to have Ns seismogenic weak failure points that we denote as p̃f,si (such that Ωs
wp ⊂ Ωwp), in

view of problem linearity the increment of tractions on a generic weak failure point p̃fj can be obtained as

∆tj =

Ns∑
i=1

Eji
l ·∆di, (34)

where ∆tj = {∆τ1,∆τ2,∆σn} is the vector of increment of tractions along the local orthonormal basis of

the receiver point and Eji
l the local elastic influence matrix that map the effects of source weak point i onto

receiver point j (see (Shou et al., 1997) for more details). Note that the seismogenic source patch is circular,

whereas the analytical elastic stress kernels used to evaluate the entries of Eij
l are built on a rectangular

finite patch. In this contribution, therefore, the kernels are evaluated over a squared area, albeit this is an

approximation.

By applying equation (34) for all the weak failure points distributed in the elastic medium, we can

calculate all the mutual effects of quasi-static deformations. We believe that these quasi-static effects are

very important since they may drive the spatial-temporal evolution of seismicity in critically stressed fractured

reservoirs, as discussed in (Ciardo et al., 2020).

Another important mechanism that is not often consistently modeled in other similar and stochastic

hybrid models is the re-triggering of weak points. Some approaches assume that once a weak failure point is

activated and release seismic energy, it can not be re-activated again and hence is discarded (e.g. (Karvounis

and Wiemer, 2022)). In other approaches, instead, a failure weak point can be theoretically activated infinite

times, as long as the over-pressure is critical enough to locally violate the Mohr-Coulomb criterion (25) in

that point (e.g. Catalli et al., 2016; Rinaldi and Nespoli, 2017; Ritz et al., 2022). This tacitly assumes that

the friction coefficient is instantaneously recovered after each triggered seismic event, or that the weakening

of friction coefficient occurs over an infinite length scale. Here, instead, we adopt a different approach that is

consistent with the physic-based constitutive relations that we have assumed to be valid for each weak failure

point/patch in the medium (see Section 3.2.4). Namely, we suppose that each weak failure point/patch p̃wp,f
i

can potentially host multiple seismic events as long as the accumulated seismic slip ds is lower than the slip

weakening scale dc. Thus, on each weak point we keep track of the accumulated seismic slip (if any) at the

time scale of injection: if it is lower than dc, the friction coefficient has not reached its residual value and

seismic ruptures are potentially allowed to (re)-nucleate (if the conditions described above are satisfied). On

the other hand, if the accumulated slip is larger than dc, the shear strength of the failing patch is at its

residual value and can not be recovered due to the irreversibility of friction coefficient with slip. Hence, in

this case the weak failure point is discarded (although it may still contribute to aseismic deformations, here

not considered). This simple approach allows the potential nucleation of multiple partial seismic ruptures on

a same failure patch, which is a scenario that may occur when micro-seismic events are triggered over a large

rupture patch. Finally, it is worth mentioning that this condition for triggering partial ruptures allows also

a physically consistent treatment of the dilatant behaviour of the seismogenic patches, for which a critical

state is expected to be reached when the slip is larger than dc (see Figure 2 in Ciardo and Lecampion (2019)

for instance).

3.2.6 Numerics

The modeling approach presented in previous sections consists of two parts that are coupled between each

other via the principle of effective normal stresses. For a given pore-fluid pressure field, a stochastic dis-

tribution of potential seismic events and deformations can be obtained from the local evaluation of the

Mohr-Coulomb yielding criterion (25) on each weak failure point. These plastic deformations, however, do

not affect pore-fluid pressure evolution, leading to a one-way coupling between fluid flow and deformations.

Note that only the transient problem of pore-fluid flow propagation in the fractured medium (13-19) requires
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a numerical resolution. The stochastic forecast of seismicity instead is obtained upon analytical evaluations

(25-34) (included the quasi-static elastic stress interactions).

In this contribution, we adopt a Finite Volume scheme with Multi-Point Flux Approximation (Aavatsmark,

2002) for the spatial discretization of fluid fluxes in the equivalent continuum medium, which is obtained upon

mapping all the pre-existing fractures in the computational grid (see example in Figure 8). We choose this

numerical method due to its capability to discretize correctly the fluid flow equations for general nonorthog-

onal grids and for general orientation of the principal directions of the permeability tensor (Aavatsmark,

2002). As stated beforehand, being able to properly capture flow anisotropy in our continuum equivalent

approach is crucial for reproducing the real percolation behaviour of the discrete fracture network. When a

pre-existing fracture is mapped onto the computational grid and is not aligned with grid directions (like in

the example reported in Figure 8), the principal directions of the permeability tensor are also misaligned and

the resulting equivalent permeability tensor (15) is dense and anisotropic. A classic Finite Volume scheme

with Two-Point Flux Approximation would not be able to solve accurately such anisotropic behaviour, but

it would actually lead to a stair-like pore-fluid flow propagation and hence an accumulation of error in the

fluxes computation, as demonstrated in many previous works (Lee et al., 2002b; Botros et al., 2008; Rutqvist

et al., 2013).

We have implemented the numerical scheme for non-linear pore-fluid propagation in the fractured medium

and stochastic forecast of seismicity previously described in Wolfram Mathematica (Wolfram Research, Inc.,

2022). In order to speed up computations, we have exposed part of the code to C++ via LTemplate, which

is an open-source Wolfram package that simplifies the usage of LibraryLink C/C++ API (see source code

at https://github.com/szhorvat/LTemplate). In particular, we have exposed only the operations with

computational complexity of O (m · n), where n and m are two variables that can both be very large. These

operations are:

• Mapping of all the pre-existing fractures onto the computational mesh. This method consists in a

double nested loop (the outer over all the pre-existing fractures and the inner over all the mesh finite

elements) that flags the mesh elements intersected by each pre-exisiting fracture. For a given element

intersected by a fracture, the algorithm returns the corresponding element index and the associated

fracture index (both integers).

• Evaluation of elastic stress interactions. This method also involves a double nested loop, with the outer

loop over all the seismogenic weak points Ωs
wp and the inner one over all the weak points Ωwp. When

the number of seismic events gets large, the calculations of the mutual elastic stress interactions might

get slower. With the usage of LTemplate, an order of magnitude of speed-up is obtained circa.

• Assembling of the Multi-Point Flux Approximation matrix. Although the computational complexity

of the method that assembles such a Ne ×Ne sparse matrix is O (r ·Ne), with r being a small scalar

value, its call is performed at every fixed-point iteration (due to the non-linear variations of fractured

permeability tensors with local effective normal stress) and every loading (time) increment.

3.2.7 Verification of flow numerical solver

We benchmarked the numerical solver for pore-fluid propagation in porous media previously presented against

some analytical and numerical solutions. This is a common practice in the community of fluid flow in porous

media (e.g. (Flemisch et al., 2018)).

For sake of space, we report only one verification test, which corresponds to the case of an instanta-

neous point source injection in an anisotropic unfractured porous medium. For this test, we consider a

simulation domain of 11 × 11 × 11 m, uniformly discretized with cuboids of 0.11 × 0.11 × 0.11 m (the total

number of finite elements is 106). A fluid mass ∆Q = 0.01 Kg of water is instantaneously released in a

point (xinj = 5.555, yinj = 5.555, zinj = 5.555) of the homogeneous medium. In this test, we assume the the

principal directions of the permeability tensor are aligned with the grid directions, but anisotropic condi-

tions between x−, y− and z−directions are considered. Notably, we assume that the permeability along

x−direction is larger than the permeability along y−direction, which in turn is larger that the permeability
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Table 2: Input parameters for verification test.

Symbol Description Value

Fluid and material properties

ρ Fluid density 103
[
Kg/m

3
]

β Compressibility parameter 10−10 [1/Pa]
µ Fluid kinematic viscosity 10−3 [Pa · s]
ϕ Porosity 10−2 [−]

Permeability tensor properties
kxx Permeability 10−15

[
m2
]

kyy Permeability 0.5 · 10−15
[
m2
]

kzz Permeability 10−16
[
m2
]

kxy = kyz = kxz Permeability 0.
[
m2
]

In-situ conditions
po Uniform pore fluid pressure 107 [Pa]

Injection parameters
∆Q Mass 0.01 [Kg]

(xinj , yinj , zinj) Injection location (5.555, 5.555, 5.555) [m]

Simulation parameters
tinit Initial time 0. [s]
tend End time 2. [s]
∆t Time step 0.01 [s]
ts Time of instantaneous release 0.01 [s]

in z−direction (see their values in summary Table 2). Pore-fluid over-pressure is thus expected to dissipate

faster along the x-direction compared to the other two.

For this specific problem, there exists also an analytical solution that reads (Carslaw and Jaeger, 1959)

p (x, y, z, t)−po =
(∆Q/ (ρβ)) (µβ)

3/2

8
(
π3 (t− ts)

3
kxxkyykzz

)1/2 ·Exp
(

−µϕβ

4 (t− ts)

(
(x− xinj)

2

kxx
+

(y − yinj)
2

kyy
+

(z − zinj)
2

kzz

))
(35)

where ts is the specific time at which the fluid mass ∆Q is released in the homogeneous and anisotropic

porous medium. Assuming an initial uniform pore pressure distribution po = 10 MPa and no-flux boundary

conditions, we solve numerically the corresponding time-dependent boundary value problem using the pa-

rameters reported in Table 2. The left and top-right plots in Figure 9 show the spatial profiles of pore-fluid

over-pressure for different time snapshots, along three orthogonal directions crossing the injection point. We

can readily observe that, for each time snapshot, the spatial extent of fluid over-pressure is much larger

along x-direction, compared to the others (as expected). Furthermore, a good match between numerical and

analytical solution is obtained. Although at early time there is a bit of discrepancy between numerical and

analytical solutions in a small region near injection point (along all the directions), the numerical solution

quickly catches up with the analytical one. At time t = 1.9 s the corresponding relative errors (reported in

bottom-right plot) are everywhere lower than 5% (on distances where the over-pressure is not null).

3.2.8 Application to FORGE 2022 stimulation: preliminary results

We present now preliminary results related to the FORGE 16A stimulation of April 2022. We generated

stochastically a Discrete Fracture Network representative of the FORGE Test site in-situ conditions. Using

the available data (Utah FORGE - University of Utah, 2022), we generated 25500 pre-existing disk-shaped

fractures uniformly distributed in the computational domain (see Figure 10-a). Fracture radii follow a Pareto

distribution with minimum radius of Rmin = 10 m and a power law exponent of a = 3.2 (as suggested by

outcrop data (Utah FORGE - University of Utah, 2022)); fracture apertures are related to fracture radii via a

sub-linear power law (Utah FORGE - University of Utah, 2022) (with power law exponent of 0.5) and finally
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(a) (b)

(c) (d)

Figure 9: Benchmark of fluid-flow solver against the analytical solution for instantaneous point source injec-
tion in an anisotropic unfractured porous medium. Panels (a), (b) and (c) show time snapshots in terms of
pore-fluid over-pressure p−po along three orthogonal directions crossing the injection point. Panel (d) shows
the corresponding relative error.

strike and dip angles follow a Fisher distribution with a mean angle and a concentration factor (see (Utah

FORGE - University of Utah, 2022) for all the input data for fractures generation).

The fractured rock mass is subjected to an in-situ uniform pore-fluid pressure po = 24.6 MPa and a

normal stress regime, with a vertical principal stress σv = 64.9 MPa, and two horizontal principal stresses

of σH = 54.0 MPa and σh = 43.1 MPa (with a direction of σH of N25◦E - see Figure 10-a). The standard

deviation associated with each principal stress is respectively 0.05, 0.2 and 0.1. We distributed along the

pre-existing frictional fractures, characterised by a friction coefficient f = Tan(37◦) and a dilatant angle

Ψ = 2◦, 95730 weak failure points (with a density of points per fracture of ∼1000). The effective stress state

associated with each weak failure point is reported in Figure 10-d.

Fluid is injected in the middle of the computational domain (see Figure 10-b), following the strategy

reported in panel 10-c. Note that we adopted a fluid viscosity of µ = 10−1 Pa · s that is approximately similar

to the viscosity of the fluid adopted during the real injection experiment (power law rheology).

Upon mapping all the pre-existing fractures onto the computational domain composed of 1 millions of

regular cuboids (see Figure 10-b), we generated the equivalent properties of the single continuum medium.

Namely, we generated the equivalent permeability field and the equivalent porosity field, as displayed in

Figure 11. We then ran a forward simulation in order to forecast seismicity.

Figure 12 shows the generated seismicity cloud for different viewpoints at the end of the numerical

experiment. The total number of events triggered by anisotropic pore-fluid migration from injection point is

3994, with a maximum moment magnitude of 0.96. It is interesting to note that seismicity spread away from

injection point consistently with in-situ critical stress directions. The blue dashed lines reported in Figure

12, which identify the directions associated with the critical orientations θc = ± (π/4 + ArcTan(f)/2) = 82◦,
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(a) (b)

(c) (d)

Figure 10: Panel (a): stochastic Discrete Fracture Network generated using an ad-hoc developed algorithm.
Radii, strike and dip angles of each fractures are sampled from given distributions to resemble in-situ condition
at FORGE test site. Panel (b): Simulation box of 800 × 800 × 800 meters, centred on injection point (red
point) located at 2.536 km depth. This simulation box is discretized with a structured mesh composed of
1 million of cuboids, resulting in 1030301 mesh nodes. Panel (c): Injection protocol adopted. Panel (d):
Distribution of fractures’ effective stress states on the Mohr-Coulomb plot.

are aligned with seismicity strands. The temporal evolution of induced-seismicity suggests also that part of

the events are triggered by elastic stress interactions.

4 Future directions

Hybrid models have the potential to become important components for induced seismicity mitigation strate-

gies. They provide a more accurate description of key physical processes than pure statistical models, still

being fast enough for real-time or pseudo-real time applications.

In this deliverable, we have presented a new suite of hybrid hydro-mechanical models for induced seismicity

forecasting. HM0 and HM1 models are uni-dimensional hybrid models and thus can efficiently be used to

forecast seismicity in real-time or pseudo real-time. An inverse capability based on Differential Evolution

algorithm has been implemented and tested successfully with BedrettoLab and FORGE datasets. Notably,

the results associated with the hydraulic stimulation at the BULGG show that HM1-SEED is the model

that performs the best (compared to the others - see Figure 5), whereas HM0-CAPS is the one that has
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(a) (b)

Figure 11: Equivalent continuum models obtained upon mapping all the pre-existing fractures onto the
computational domain. Panel (a) represents the equivalent permeability field, whereas panel (b) represents
the equivalent porosity field prior to fluid injection.

(a)

Figure 12: Different view angles showing micro-seismicity cloud generated with HMStat. Blue dashed
lines represent the critical directions, i.e. the directions associated with the critical orientations θc =
± (π/4 + ArcTan(f)/2) = 82◦.

the worst performance. Although they are very promising due to their low computational cost, they can be

further improved. Spatial distribution of seismicity and magnitudes, for instance, can also be included in the

inverse modeling procedure, leading to a more physically consistent calibration of model parameters. In the

future, we plan to implement the aforementioned features and further test these models using more datasets.

Furthermore, we will test the real-time applicability of these models by running them in a pseudo-perspective

way introducing a data assimilation scheme. The presented hybrid models will be used together with state-

of-the-art statistical models (see D3.1) to assess the pseudo-real time seismicity forecasting performances in

the test-bench exercise foreseen within the activity of WP3 as reported in the Mid-term evalution report.

As far as HMStat is concerned, we have presented a new three-dimensional hybrid model that accounts

for non-linear pore-fluid propagation in fractured rock masses. We have introduced substantial improvements

compared to similar existing models. Namely, we now account for a frictional weakening constitutive relation

for the weak failure points and a criterion that allows to differentiate between seismic and aseismic slip, as

well as seismic repeaters. Obviously, this model is more computationally expensive than HM0/1 due to its 3D

nature. Nevertheless, it can be potentially used for pseudo-real time applications, since we plan to implement

the current model with an inversion scheme. In the current version of this hybrid model, the calibration

of parameters must be done manually and thus the applicability of this model reduces to only a forward
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forecasting of seismicity, that indeed is essential to build up physics based synthetic catalogs of seismicity to

be used in a scenario-based hazard and risk evaluation.

In the future, the release of an upgraded and revised seismicity catalog of the FORGE 2022 stimulation

will allow us to improve the forward capabilities of HMStat. To this end, more simulations and realizations

will be performed in order to properly investigate the stochasticity of the model and compared the results

with observations. We will finally replace the stochastic discrete fracture network with the one provided by

the FORGE team and available on https://gdr.openei.org to better tailor the model’s outcome to the

FORGE test site.

25

https://gdr.openei.org


Bibliography

F. Grigoli, S. Cesca, E. Priolo, A. P. Rinaldi, J. F. Clinton, T. A. Stabile, B. Dost, M. Garcia Fernandez, S.

Wiemer, T. Dahm Current challenges in monitoring, discrimination and management of induced seismicity

related to underground industrial activities: an European perspective. Review of Geophysics, 55, 310-340.

J. H. Healy, W. W. Rubey, D. T. Griggs, and C. B. Raleigh. The Denver Earthquakes. Science, 161(3848):

1301–1310, 1968.

W. L. Ellsworth. Injection-induced earthquakes. Science, 341, July 2013.

M.D. Zoback and H.-P. Harjes. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB

deep drilling site, Germany. Journal of Geophysical Research: Solid Earth, 102(B8):18477–18491, 1997.

N. Deichmann and D. Giardini. Earthquakes Induced by the Stimulation of an Enhanced Geothermal System

below Basel (Switzerland). Seismological Research Letters, 80(5):784–798, 2009.

F. Grigoli, S. Cesca, A. P. Rinaldi, A. Manconi, J. A. López-Comino, J. F. Clinton, R. Westaway, C. Cauzzi,
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