Innovation for:
De-Risking Enhanced
Geothermal Energy Projects

Deliverable

Deliverable 2.2 - Comparison of different techniques for induced seismicity monitoring

Report information

Work package WP2 Innovation in real-time monitoring and big-data analysis for EGS

Lead ETH, IEG

Authors Claudia Finger, Peidong Shi, Katinka Tuinstra, Federica Lanza, Juan Porras & Francesco Grigoli
Reviewers [Luigi Passarelli]

Approval Stefan Wiemer

Status Draft

Dissemination level Internal

Will the data supporting

this document be made Yes
open access?

If No Open Access,
provide reasons

Delivery deadline 31.05.2022
Submission date 22.06.2022
Intranet path [DOCUMENTS/DELIVERABLES/Deliverable2.2.docx]

DEEP Project Office | ETH Department of Earth Sciences
Sonneggstr. 5, 8092 Zurich | deep-office @sed.ethz.ch | www.deepgeothermal.org

* X

* % This project has been subsidized through the Cofund GEOTHERMICA, which is supported by the European Union’s HORIZON
* 2020 programme for research, technological development and demonstration under grant agreement No 731117.

* g x

*

27.05.2022 1



DEEP — Innovation for De-Risking Geothermal Energy Projects

Table of Contents

5T 1275 1 T- T 3
1. g Yo Yo 11Tt o oY o PO 3
2. D T - T 4
2.1, COSEISMIQu ...ttt et sttt e et nn e ehe s 4
2.2. GEMEX e st e e 4
2.3. FORGE 2019 Pilot STIMUIGTION ...ocviiiiciiesiiecteeeeteeeee et sae e e e sre e e e snae e e 4
2.3.1. Hazard and reservoir monitoring NEtWOIKS...........c.cccvriiiiicricc s 5
2.4.  Preliminary synthetic data set for FORGE ........cccoooiiiriiiiniieiceseetee ettt 6
3. Detection of microseismic events and arrival times of seismic phases..........cccvvvveeeeeeeinnnn. 6
3.1. A microseismic event detector for DAS data.....ccocceeeererienieieirerie ettt 6
3.1.1. Application to the FORGE 2019 stimulation dataset .........cccoevrrieeeieiinnncceeienseciee e 7
3.2.  Anew picking algorithm for DAS data.........cccececinniiiiiiiiininiicic s 8
3.3. Machine-Learning based picker algorithms.........ccccvviiireicinn e 9
3.3.12. Application to the FORGE 2019 stimulation dataset ........c.cooeeeeeininnnninieeeeee e 10
3.4. Conventional automatic picker algorithms.......c.oveviirninicc e 11
3.4.1. Application to the FORGE 2019 stimulation dataset ............cocoiiiciinnniiccceccceee 11
4. Location of single and clustered microseismic events...........ccceerrrrmenniincinennneeee, 12
4.1.  Relative Cluster Location algorithm for DAS data.....c.cccveirerinneinieineeneeceeeereesreenneennnes 12
4.1.1. Application to the FORGE 2019 stimulation dataset (natural seismicity)......ccccorvreeeeerennnninnns 14
4.2.  Backprojection of phase probabilities........cceviireieieiiiince e 15
4.2.1. Application to the COSEISMIQ, Iceland, dataset ..., 16
4.3.  Earthquake locations from elastic Time-Reverse Imaging (TRI) ....coeveeeerenenieeneneneneieennens 17
4.3.1.  Application to Los Humeros, Mexico, dataset .........cceeeiinrninriiicicicienrrsee e 17
4.3.2.  Application to preliminary synthetic dataset at the FORGE EGS Site .......ccccovvviveeeeencnininne 19
5. Conclusions and OULIOOK.........cceuuiiiiiieniniiri e 20
2] =1 =Y ol IR PP 23

9.6.2022



DEEP — Innovation for De-Risking Geothermal Energy Projects

Summary

In this deliverable we report on a suite of both conventional and newly developed methods and workflows for the
detection and location of induced (micro-) seismicity in geothermal reservoirs. We discuss the necessary resources (e.g.,
HPC, type of velocity information, GPU), recording equipment (e.g., number of stations, type of sensors used), typical
accuracies (e.g., spatial uncertainties, temporal precision), computational cost (per second of data or per event), and level
of automatization. We explore conventional approaches, as well as machine learning and waveform-based workflows.
The goal is to give a comprehensive overview from which to identify the optimal methods on the basis of available
resources, achieved accuracy, real-time capabilities, and/or processing time from data gathering to final results.

This deliverable constitutes a first report on the current work, and in the future, we will systematically compare the
presented algorithms using a common synthetic dataset. This dataset is under development and will be the foundation
for a standardized benchmark aimed at a rigorous comparison of (micro-) seismic monitoring approaches in terms of
computing performances and accuracies of detections and locations.

1. Introduction

In recent years, the number of sensors deployed at geothermal project sites has increased exponentially. As a
consequence, we have seen an increase in recorded seismic data volume along with a reduction in location uncertainties
and magnitude of completeness. These very large datasets thus offer a very high potential for investigating (micro-)
seismicity in geothermal reservoirs with an unprecedented level of detail. However, for these investigations to be useful
during geothermal operations, results need to be available in near real time and with low uncertainties. Only then can
forecasting procedures and modern reaction protocols, such as Adaptive Traffic Light Protocols (ATLP), take their full
effect in ensuring safe operations.

In this deliverable, we present and compare (1) a newly developed semblance-based method for fast detection of
microseismicity in DAS record streams (section 3.1), (2) three picking algorithms, including a cross-correlation based
picker for DAS (section 3.2), a new machine learning based phase probability picker and location workflow (MALMI, Shi
et al., 2022; see also D2.1, sections 3.3, 4.2), and the well-established nonparametric autopicker method of Rawles
&Thurber (2015), kpick (section 3.4); and (3) two types of location algorithms: HADES, a clustered event relocation
algorithm based on a distance geometry problem (Grigoli et al., 2021; section 4.1) and time-reverse imaging or
backprojection location schemes (section 4.2, 4.3, Li et al., 2020).

Here, we show the initial results of each approach on available datasets, namely the 2019 FORGE stimulation data, the
COSEISMIQ dataset collected in Iceland (Grigoli et al., 2022) and the GeMEX dataset collected in Los Humeros, Mexico
(Toledo et al., 2020). We also show results from preliminary synthetic waveform data that mimic the geological situation
at the FORGE site. When possible (e.g., the same dataset is used) we make a qualitative comparison of the results in
terms of accuracy, computational efficiency, and assumptions. We then conclude with some outlook for future
development.
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2. Data sets

2.1. COSEISMIQ

The project COSEISMIQ (COntrol SEISmicity and Manage Induced earthQuakes,
http://www.coseismig.ethz.ch/fen/home/), also funded by GEOTHERMICA, was a predecessor of the current DEEP project
as it also aimed at integrating innovative seismic monitoring and imaging techniques, geomechanical models and risk
analysis method with the ultimate objective to develop safe and sustainable geothermal energy systems. In COSEISMIQ,
the active geothermal system in the Hengill region in Iceland was chosen as a well-rounded demonstration site. This
region is located in the southern end of the Western Volcanic Zone (WVZ), at the triple junction between the WVZ, the
Reykjanes Peninsula (RP), the landward extension of the Reykjanes spreading ridge, and the South Iceland Seismic Zone
(SISZ). Due to its complex tectonic setting and the ongoing geothermal operations in the area, several thousand natural
and induced seismic events occur every year. In the Hengill area, the permanent seismic network is run by the Iceland
GeoSurvey (ISOR) and the Icelandic Meteorological Office (IMO) and comprises a total of 14 stations. In November 2018,
within the framework of the project COSEISMIQ, the network was densified with 26 additional temporary stations. This
temporal network includes g broadband STS-2 (120s), 5 Guralp 6D (30s) and 12 short-period 5s-Lennartz. During the
monitoring period from 2 November 2018 to 2 July 2020, ISOR reported a total of 12,157 events in the Hengill region, 69
of them with magnitudes larger than M. 2.0 (Grigoli et al., 2022). Seismic sequences in this area are usually characterized
by spatial and temporal clustering and small magnitudes below the resolution of regional networks. This makes the
COSEISMIQ dataset a perfect application for testing new seismic data analysis workflows as we aim at pushing
detectability and location of smaller magnitude events, which we expect to be produced in deep geothermal
stimulations. In section 4.2, we process one month of continuous seismic data from 41 stations of the augmented Hengill
network and compare with existing seismic catalogs related to the microseismic monitoring operations carried out for
the project COSEISMIQ.

2.2. GeMEX

The project GeMEX (Cooperation in Geothermal energy research Europe-Mexico for development of hot enhanced (hot-
EGS) and super-hot geothermal systems (SHGS), funded by Horizon 2020, aimed at advancing the development and
exploitation strategies for unconventional geothermal resources. One of two chosen sites for the project is the
geothermal field of Los Humeros, Mexico, which is an actively producing geothermal field with numerous injection and
production wells. The northern part of the area is much hotter (>380°C) than the wells used for production today. The
development of this part of the reservoir presents a challenge, both because of the high temperature and because of the
water chemistry. In addition, the area was only poorly characterized by geophysical and geological surveys before the
project. Extensive passive seismic monitoring was carried out between September 2017 and September 2018 with a total
of 27 three-component seismic stations (Toledo et al., 2019). 25 broadband stations (22 Trillium C-120s and 3 Trillium C-
20 PH) recording at 200 Hz, and 20 short period stations (Mark L-4C-3D) recording at 100 Hz are deployed at the surface
with an average inter-station distance of 1.6 km to 2 km and a total aperture of 30 km. A preliminary catalog was provided
by Gaucher et al. (2019). To test the application and accuracy of TRI in a less-than optimal setting, this dataset, with its
inadequate station distribution for TRI (Finger & Saenger, 2020) and only a one-dimensional velocity model (Loer et al.,
2020) is the perfect candidate.

2.3. FORGE 2019 Pilot Stimulation

The U.S. Department of Energy FORGE is a dedicated international underground field laboratory in Utah and the selected
demonstration test site within the DEEP project. Its purpose is to develop, test, and accelerate breakthroughs in EGS.
FORGE is located in a low-risk area in the vicinity of the town of Milford in Beaver County, Utah, on the western flank of
the Mineral Mountains (Moore et al., 2019; Wannamaker et al., 2020; Pankow et al., 2020). The site is in continuing
development with new wells and instrumentation being drilled/added. In this deliverable, we used the wells and network
configuration in place at the time of the 2019 stimulation, as data from the current monitoring network, which was used
in the most recent April 2022 stimulation, is currently not available as it is being pre-processed at the time of writing.
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2.3.1.  Hazard and reservoir monitoring networks

In 2019, in addition to stations of the Utah Regional Seismic Network (URSN), surface monitoring consisted of five
surface broadband stations, three accelerometers, of which one was placed in a shallow well (68-32), and several
temporary high-density (nodal) experiments in various configurations covering the footprint of the FORGE site.
Among the wells drilled at FORGE, well 58-32 was used for stimulation and well 78-32, located about 400 m east-
southeast of 58-32, was used for deep seismic monitoring (Figure 1). Well 78-32 was equipped with an industry-
grade 12-level geophone string deployed by Schlumberger, and an optical fiber in a metal tube, cemented behind
the casing. The geophones were positioned at depths of 645-980 m, with 30.5 m spacing between each sensor.
They were only recording during the stimulation. The installed fiber was engineered by Silixa and interrogated
using the Carina system (Naldrett et al., 2020). Distributed Acoustic Sensing (DAS) data was acquired witha 1 m
channel spacing using a 20 m gauge length. An example of the DAS data in the well 78-32 from the 2019 pilot
stimulation is given in Figure 2, featuring both a microseismic event from the stimulation, as well as a recorded
earthquake from a cluster approximately 3 km to the east of the borehole. Note the high spatial coherence
measured by the DAS of the wavefield.

Both geophone data and DAS data are openly available for download at the Geothermal Data Repository (GDR)
website (https://gdr.openei.org/forge). Data from the temporary 151 nodal surface stations is available through the
University of Utah website (https://constantine.seis.utah.edu/index.html). Near the FORGE project's completion
all the waveform data collected will be transferred to the Incorporated Research Institutions for Seismology Data
Management Center (IRIS DMC).

For testing our new picking and location methods (sections 3 and 4) for both velocity and strain-rate (DAS) data,
here we focus on the microseismic catalog of ca. 400 events constructed from the downhole geophones by
Schlumberger. The Schlumberger catalog thus constitutes our initial reference ground truth. We note here,
however, that, due to proprietary information issues, we do not know the full details of the different steps taken
during the processing of the data, and thus use the downhole catalog as supplied by the contractor. In addition, for
the DAS data, as a fundamental step for testing the theory and capability of the methods, we also simulated
synthetic data based on the 2019 FORGE network configuration.

granite contact = Well 58-32 —— FORGE site outline
surface — Well 78-32 Earthquake events
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Figure 1. Utah FORGE network configuration for the 2019 pilot stimulation. The FORGE footprint is in green; the pilot
stimulation well 58-32 is indicated by a blue line; whereas the monitoring well 78-32 is shown in black. Blue square -
stimulation zone, green square - natural earthquakes zone. The domain contains a strongly dipping granitic layer,
everything below the gray surface is the granitic layer, and everything above is a sedimentary basin. Depth is depicted as
meter .a.s.l.

9.6.2022 5



DEEP — Innovation for De-Risking Geothermal Energy Projects

event time 2 4-27T721:26:40.398500Z

depth [m]
depth [m]

time(s]

time(s]

Figure 2. Two events recorded by the DAS cable, zero-time taken 0.075 before the event detection time, processed using
an F-K filter, trace muting and global normalization. The left image shows one of the microseismic events originating
from the 2019 stimulation zone. It shows a clear P-wave arrival at the bottom of the cable just after the zero-time, and
an S-wave arrival as well as a second P-wave arrival at 0.2s, that is probably caused by interaction of the wavefield with
the granitic layer that is roughly located at the bottom of the cable. The right image shows a regional earthquake that
originated in a cluster about 3 km to the east of the borehole. Here there is also a clear P-wave arrival just after os, and an
S-wave arrival at 0.5 s. The larger lag time between the P- and S-wave shows that this event took place further away.

2.4. Preliminary synthetic data set for FORGE

To compare the performance of different seismic monitoring algorithms, we need to adopt a standardized testbench
approach. As a starting point, we are building a wave propagation modeling workbench in order to conveniently and
systematically define simulations of microearthquakes and test detection and location methods. A synthetic testbench
has the prevailing advantage that the ground truth (i.e., the true number of sources, their origin time and their location)
is known. For each method, locations with uncertainties can be directly compared to the ground truth and an absolute
error can be reported. For the synthetic testbench, we aim at creating a digital twin of the FORGE EGS site in Utah, USA.
To this end, the elastic full wavefield is simulated using a three-dimensional model of shear-wave velocity (Vs) and
compressional-wave velocity (Vp) derived for the FORGE footprint derived from previous studies (Lellouch et al., 2020;
Zhang & Pankow, 2021). We then use synthetic source locations from both the earthquake catalogs compiled during the
2019 pilot stimulation at FORGE and the one obtained during the recent stimulation in April 2022 to ensure realistic
magnitude-frequency relations and realistic source distributions. Coherent and incoherent noise will be added to the
simulations for maximum complexity. Receivers can be placed at arbitrary locations in the model domain and can be used
to test different sensor distributions and network configurations (i.e., inter-sensor spacings, surface vs. borehole sensors,
azimuthal coverage). Displacement as well as strain data will be recorded to investigate different sensor types (traditional
seismometers and distributed acoustic sensing systems (DAS)). The synthetic testbench is currently in development and
will be used to update the information performances of the methods presented in this initial report.

3. Detection of microseismic events and arrival times of seismic phases

In the following sections we describe new and modified methods for the detection and the identification of phase arrival
times of microseismicity.

3.1. A microseismic event detector for DAS data

DAS systems collect data in the order of 10*-102 Terabytes per experiment (Quinteros et al., 2021). This leads to
limitations in regards to the capacity of permanent waveform archival and therefore, a possible solution is to store only
the data containing the events. To do so, new algorithms for real-time detection must be established, since the standard
approaches fail as they are either computationally expensive or do not fully exploit the high spatial density of DAS arrays.
Here we present a semblance-based near real-time microseismic event detector that fully exploits the DAS high spatial
sampling and allows to measure the coherency of the seismic wavefield.
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As DAS data are inherently noisier than conventional geophones, any event detection algorithm applied to DAS should
include pre-processing steps (e.g., linear and median filtering, frequency-wavenumber filter) aimed at denoising the raw
data. The event detector proposed here is based on a modified version of the semblance function (Neidell & Taner, 1971)
that makes use of the data itself as the only input. The detector identifies seismic events by looking at waveform
coherence along geometrical hyperbolas while changing the curvature and position of the vertex, thus leaving aside the
dependency on physical parameters such as velocity. The method returns a time series of coherence values and, if these
values are higher than a determined threshold, a seismic event is detected. This approach fully exploits the high spatial
density of the seismic wavefield recorded with DAS without any data conversion and no other input than the data itself,
reducing the computational time otherwise required by conventional detection methods. Several tests demonstrated
that the best performances of the algorithm are obtained when the derivative of the STA/LTA stacking function is used
as input data (for more details on the method, see deliverable D2.3).

3.1.2.  Application to the FORGE 2019 stimulation dataset

We applied the detector to a test sample of 110 events recorded by the DAS cable installed at FORGE site (well 78-32)
during the 2019 stimulation. Discrimination of real versus false events is based on a dynamic threshold function, defined
as the mean of the coherency vector plus 2.5 standard deviations in a time window defined as the 40% of the total
duration of the input data. Moreover, after the declaration of a real event, we halted the discrimination function for 1
second to make sure S-waves arrivals do not trigger a separate event. The computing time (serial code) is approximately
4 seconds per each second of data measured in a laptop with an Intel quad-core i7 processor and 16 GB of Random Access
Memory (RAM). These numbers are based on downsampled data and indicate that real-time is currently not possible, but
it is promising with the adequate optimization. Figures 33, b, and ¢, show the results of the detection algorithm for three
example events. The first event (Figure 3a) is a perforation shot, displaying high amplitude with a clear wavefield and
maximum in the coherency panel. The second event (Figure 3b) is a weak (low SNR) microseismic event, but it is still well
detected by the algorithm. The last event is extremely noisy (Figure 3c), and the algorithm is not able to detect any
maximum and it is therefore classified as false detection. Overall, the rate of detected events is equal to 72% (79 events
of the 110 events considered as the ground truth). A visual inspection of the missing 31 events shows that the events are
indeed not visible in time nor in frequency domains in the DAS data, and can be slightly identified in the geophone array,
which has higher sensitivity than DAS. Therefore, those events are below the SNR of the denoised DAS data and not
detectable by the algorithm. We conclude that this new semblance-based DAS detector is able to correctly identify all
the events that are effectively visible in the data.

FORGE DAS 2019-04-24T22:24:26.5Z -- Max coherence: 0.156
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FORGE DAS 2019-04-27T17:20:10.0Z -- Max coherence: 0.04
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Figure 3. Example of the semblance-based detector performances on three test events of different signal-to-noise ratio:
a) Perforation shot, characterized by a well-defined P-wave arrival at ~0.8 s. On the right, the coherence panel shows a
well-defined maximum in correspondence of the event. b) Microseismic event, with the P-wave arrival at ~0.76 s and the
S-wave at ~0.9 s. On the right, the coherence panel shows a well-defined maximum in correspondence of P and S phases,
¢) Noise, the coherency panel that does not show any well-defined maxima. At ~o0.2 s the coherency vector overcomes
the threshold but it is classified as a false detection.

3.2. A new picking algorithm for DAS data

Once an event is detected, many location algorithms require picks of the P- and S-wave arrival times. Although picking
for conventional seismic (velocity) data is a mature field with numerous software readily available, these techniques,
similarly to the classical methodologies for earthquake detection, often fail or prove inefficient when used with the large
amount of data and low signal-to-noise quality recorded by DAS. Here we describe a new picking algorithm for DAS. Both
microseismicity and natural earthquake data collected during the FORGE 2019 pilot stimulation (blue and green squares
in Fig. 1) were used for testing/training.

Classical picking methods face many challenges when applied to DAS data. For example, STA/LTA pickers cannot be
uniquely tuned to accommodate the largely different magnitudes and signal-to-noise ratios found in the data. Likewise,
more sophisticated pickers such as e.g., Phasenet (Zhu & Beroza, 2019) often require three components and expensive
computational power, which are not always available. Thus, we have developed a semi-automatic method based on user-
defined hand-picks, interpolation and cross-correlations. The full workflow is shown in Figure 4. The DAS data is

preprocessed in python by trace muting, global normalization, bandpass filtering between 5-250 Hz, an FK filter to
9.6.2022 8
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remove the zero-wavenumber noise and a 2D-median filter. Consecutively, viaa MATLAB interactive GUI, the user clicks
a predefined number of hand-picks (pluses in Figure 4a) around the P-wave and S-wave arrival times. Linear interpolation
along these hand-picks is performed and extrapolated around an adjustable time interval following the hand-picks (blue
and red lines in Fig. 4a), that is set slightly longer for the S-wave picks to accommodate for its longer waveform. If the
user defines fewer hand-picks the interpolation could be set to spline interpolation to accommodate for the curvature of
the wavefield between fewer points. The hand-picks are then stacked to form a wavelet template of a defined time-width
(Fig. 4b). Subsequently, this stacked wavelet is cross-correlated with all traces along the DAS cable, within the given time
intervals. This process is done separately for the P- and S-phase arrivals. The final picks for all traces correspond to the
maximum cross correlation values (Fig. 4c).
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Figure 4. Workflow of the MATLAB-based picking algorithm for DAS data. a) hand picks of P-wave and S-wave arrival
times; b) wavelet template derived from stacked handpicks over a pre-defined time window, c) final picks for all traces.

3.3. Machine-Learning based picker algorithms

Machine Learning (ML) based methods provide a promising way of analyzing large datasets in an automated way.
Previous studies have shown that ML-based picking methods can achieve comparable or even superior picking accuracy
to manual picks and, at the same time, operate with very high efficiency, not inferior to classical automatic picking
algorithms such as STA/LTA (Zhu & Beroza, 2019; Mousavi et al., 2020). In this section, we demonstrate the application
of ML-based phase pickers on an induced microseismic dataset with a very high sampling rate (2000 Hz). The obtained
pickers or phase probabilities from ML models can be further used in a classical traveltime-based location algorithm or a
waveform-based location algorithm to locate events in a fully automatized workflow (section 4.2).

9.6.2022 9
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Pre-trained Machine Learning (ML) models (Ross et al., 2018; Zhu & Beroza, 2019; Mousavi et al., 2020, Woollam et al.,
2022) enable us to directly apply existing ML models to a new dataset to generate phase picks or continuous phase
probabilities from raw seismic waveforms. This is especially beneficial in conjunction with continuous waveform-based
location methods such as in MALMI (MAchine Learning aided earthquake Migration location; see Deliverable 2.1; Shi et
al., 2022, and section 4.2). Currently, most ML models for phase picking are trained on local, regional or global earthquake
datasets whereas microseismic events with magnitude smaller than o are extremely under-represented and seismic data
are recorded at a sampling rate ranging from 5o0-200 Hz. Therefore, we need to examine the performance of pre-trained
models on the induced earthquake dataset where low magnitude microseismic events are dominant and/or high
sampling rate data are acquired.

3.3.2.  Application to the FORGE 2019 stimulation dataset

We test the ML phase picking performance on the FORGE 2019 pilot stimulation dataset (blue square in Fig. 1). This
microseismic dataset was collected at the Utah FORGE geothermal site at a sampling rate of 2000 Hz by 12-level
geophones deployed in a vertical borehole (well 78-32) during the injection of high-pressure fluids. We evaluated different
ML models and data pre-processing strategies to feed to ML models (Figures 5, 6 and 7). We identified the best-fit ML
model through the quantitative comparisons among the different ML models (including Generalize Phase Detection -
GDP, PhaseNet and EQ-Transformer). To gain better prediction performance of ML models on the small scale
microseismic events, we tested the pre-processing strategy of modifying the sampling rate of the seismic meta-data to
enlarge the scale of the microseismicity to a similar scale of local or regional earthquakes and feeding the modified data
to the pre-trained ML models. We note that the EQ-Transformer model works well on the re-scaled traces with multiple
events, events with short inter-event times, and exhibits comparable picking precision with manual picks (Figure 8). We
conclude that microseismic events with low magnitude (below M. -0.5 or -1) have distinct waveform features than the
local and regional earthquakes of larger magnitude (>0), thus cannot be predicted well by all the pre-trained ML models
tested using original data. However, re-scaling the microseismic events is an efficient way to increase the ML model
performance on seismic events of different magnitudes (Figures, 5, 6, and 7).
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Figure 5. Event identification and phase picking results of the GPD (Generalize Phase Detection) ML model (Ross et al.,
2018) on (a) the original data and (b) the re-scaled data.
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Figure 6. Event identification and phase picking results of the PhaseNet ML model (Zhu et al., 2019) on (a) the original
data and (b) the re-scaled data.
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Figure 7. Event identification and phase picking results of the EQ-Transformer ML model (Mousavi et al., 2020) on (a) the
original data and (b) the re-scaled data.
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Figure 8. Comparison between the manual picks (solid line) and the ML picks of the best-fit model (dashed line) for P-
and S-phases of a Mw -0.7 microseismic event.

3.4. Conventional automatic picker algorithms

Accurate identification of phase arrival times is essential to assure high-precision earthquake locations in standard
workflows. In order to compare the performance of conventional picking methods with emerging waveform-based and
machine-learning based methods, we have chosen the non-parametric autopicker method of Rawles & Thurber (2015),
kpick. This algorithm is user-friendly, fast, data-driven and robust for automatically detecting P- and S-wave arrivals
based on a nearest neighbors-based approach. The strength of this algorithm resides in the fact that the method uses
the data itself to define the model, rather than building a model by estimating parameters from the data. kpick produces
a score function defined as the ratio of the similarity of a given trace to a set of ‘positive’ reference waveforms (i.e.,
containing real P- and S-wave onsets) to the similarity of the trace to a set of ‘negative’ reference waveforms (i.e.,
containing P-wave coda or a flat horizontal line). A phase arrival is chosen as the center position of the window that
maximizes this score function. The method has been used on various local earthquakes datasets and we test it here for
the microseism dataset of the 2019 FORGE stimulation (blue square in Fig. 1). We note here that, in its current
implementation stage, the algorithm is not suitable for application to continuous data for simultaneous event detection
and phase picking.

3.4.1.  Application to the FORGE 2019 stimulation dataset
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Our set of reference waveforms includes 10 positive traces with good P- and S-wave manual picks, whereas the negative
traces consist of a horizontal line. Similarly to what we observed when testing the ML models on small scale microseismic
events (section 3.3), as a pre-processing step, we also had to re-scale the data by modifying the sampling rate of the
seismic meta-data to enlarge the scale of the microseismicity to a similar scale of local or regional earthquakes. Traces
were then bandpass filtered between 1 and 20 Hz with a Butterworth filter. In Figure ga are shown examples of P- and S-
wave auto-pick results for two events of M, -0.7 (same event of Fig. 8) and M, -1.5, respectively. To assess the quality of
the P- and S-wave picks made by kpick, we used the slope of the L1-norm fit to the measurements in the Wadati diagram
(Figure gb). Any point outside the lines with slope +/- 0.2 away from that of the L1-norm fit is considered erroneous and
removed. Overall, kpick P and S-picks are in good agreement with hand-picked arrivals, and it succeeded in picking 79.2%
of the total events of the initial catalog (336/424). In the majority of the cases, failure is associated with the smallest
magnitudes where the SNR is very high.
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Figure 9. Results of P- and S-wave kpick auto-picking for two events of M. -0.7 (left) and M, -1.5 (right). a) Comparison of
manual, and kpick P- and S-wave arrivals for geophone Gog. b) Wadati plot: white circles indicate the P-wave picks versus
the difference between P-wave and S-wave auto-picks on all geophone stations. Red circles represent discarded picks.

4. Location of single and clustered microseismic events

We now present the new and/or adapted location algorithms that are being developed within the project in order to
tackle events with short inter-event times, low magnitude or recorded by noisy DAS data.

4.1. Relative Cluster Location algorithm for DAS data

In the case of DAS data, the one-component nature of a vertically deployed DAS cable can lead to difficulties when
locating seismicity. When only one single cable is present, the depth and distance from the cable may be computed using
e.g., simple distance estimations from the lag-time between the P- and S-phase arrival as well as the angles of arrival.
However, there is no information on the azimuth of the seismic event when the cable presents a linear geometry, unless
prior information is provided. To overcome some of these challenges, we adapted the relative inter-event distance
location algorithm HADES (eartHquake locAtion via Distance gEometry Solvers; Grigoliet al., 2021;
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https://github.com/wulwife/HADES) to include DAS data. In the original method, the relative distance between
earthquakes is computed from the S- and P-wave arrival time differences, leading to event locations in a relative frame.

Thus, the method is suitable for clustered (micro-)seismicity with sparse data coverage, and it requires only the station
coordinates, a minimum of four master events with a priori known location, a homogeneous velocity model, and of course
P- and S-phase picks of the events in the cluster. The uncertainty in the master events is reflected in the uncertainty of
the final location of the earthquake cluster. The HADES workflow is graphically represented in Figure 10.
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Figure 10. (Left) The inter-event distance r* can be estimated by taking the S- and P-wave travel time (ts and t;,
respectively) differences of two events and use the P- and S-wave velocities (v, and vs) to calculate the distances as

1751621l = Ky |(t§1 - t,e,l) — (2 - tH)| with k, = (:”’: > (middle) This is then repeated for all inter-event distances in
p~ Vs

the cluster and then (right) the cluster can be located in an absolute frame using the master events.

Among the improvements to the original method, we now (1) require only one a-priori well-located master-event, and
(2) are able to handle large arrays, such as DAS, by either considering multiple random combinations of channels or using
aneural network to incorporate all channels at once. The latter is especially indicated when the position of the DAS cable
with respect to the events is very ill-posed. In the original version of HADES, a coordinate system was constructed from
the four master events to provide a framework for absolutely locating the rest of the events in space. With the new single
master-event method, the master event is chosen as the start of the coordinate system, and four other events are located
relative to this single event to construct a relative coordinate system as shown in Figure 11.
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Figure 11. Construction of a relative coordinate frame to locate the events using only one master event. The left panel
shows the 2D case: the master event is shown in cyan (e1) and another event in the event cloud is located with respect to
this first event (e2). Then, by calculating the distances to e1 and e2, a third event is added to the system forming a plane
(e3). Note that its azimuth with respect to the first plane will remain ambiguous. The left panel shows the 3D case: the
fourth reference event (e4) will have an ambiguous location with respect to the first plane. Thus, we can say that these 4
events form an arbitrarily oriented coordinate system that can be used to locate in a relative sense the remaining events
in the seismic cluster.

The correct rotation of the cluster is found by using quaternions (see also D2.3). Quaternions are a three-dimensional
version of rotations described by complex numbers, where only three complex numbers are needed to describe the total

rotation. If a complex number can describe rotation about one axis: z = a + bi, quaternions represent rotations in 3D
about an arbitrary axis with the axis componentsi, j, k:

a+ bi+cj +dk,

which can be written as a quaternion g rotation 8 about unit axis vector v = (v, v, v3):

q = [cos (g), v1Sin (g) v,Ssin (g) v3Sin (g)]
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Here we use three quaternion rotations about three axes: (1) the vertical Z axis to rotate the seismic clusterin the latitude-
longitude direction, (2) an arbitrary axis that spans the horizontal projection between a seismic station at which P- or S-
wave arrivals were recorded, and the cluster barycenter, and (3) an axis orthogonal to the first two axes. In this coordinate
frame the seismic cluster is then rotated until the sequence of measured arrival times at the stations are consistent with
the positions of the seismic events in the cluster.

4.1.1. Application to the FORGE 2019 stimulation dataset (natural seismicity)

We applied the modified HADES to both synthetic and real data collected during the 2019 pilot stimulation at the FORGE
EGS site. For the synthetic tests we considered the more favorable network configuration set up of the April 2022
configuration in order to better evaluate the resolution of the method. Figure 12 shows how the best event locations
(orange dots) locate within 100 m with respect to the ground-truth input events. This shows that with multiple wells with
an optimal configuration and only one master event the method can well locate the clustered seismicity and its evolution.
We then apply the method to the real data recorded during 2019 stimulation at ~3 km distance from the stimulation patch
(green square in Fig. 1). These are natural events of larger magnitude than the microseismicity produced by the pilot
injection and thus resulting in a better signal-to-noise ratio in the DAS data. In 2019 only one DAS fiber was installed in
well 78-32. As a master event we chose one well-recorded event previously located by Lellouch et al. (2021). In their work
a few events were located using the surface network, but locations obtained with only the DAS remained fairly uncertain
and without a robust azimuthal constraint. Although our results show that some azimuthal ambiguity remains around
the cluster rotation (Figure 13), we are able to reduce the overall uncertainty by adding azimuthal and depth constraints
from our method. Future improvements include using the neural-network version of HADES with additional re-trained
data in order to better estimate the inter-event distance in this relatively ill-posed angular source-receiver configuration.
In summary, the new version of HADES now has capabilities to locate clustered events using only P- and S- wave arrival
times, one a-priori located event and large arrays (large number of channels in the case of DAS). Thus, the method is able
to overcome the azimuthal uncertainty inherent to the straight-cable geometry and downhole-deployment of DAS. We
demonstrated that even with only one DAS cable, and thus very unfavorable azimuthal conditions, we are able to
reconstruct the shape and relative location of a seismicity cluster as a whole with reasonably low uncertainties. For
individual event locations of seismic events within the cluster, the method might be less trustworthy as a final locator,
but may be used as a prior for other methods to further constrain the location of the events.
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Figure 12. HADES locations for a synthetic test based on the FORGE 2022 network configuration. (Left): Map view and
(right) cross section. The blue ‘location count’ is the number of times HADES finds earthquake locations in a specific
coordinate in 150 iterations. The black dots represent the ground-truth input cluster, and the best estimate location
produced by HADES is plotted with orange dots. in yellow we show the four master events used for the location, of which
one is the single a-priori located master event and the other four are used to construct a relative coordinate system.
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Figure 13. HADES locations for real data (natural seismicity) recorded on the DAS ~ 3 km east of well 78-32 during the
2019 stimulation. (Left) Map view, and (right) cross section. The blue ‘location count’ is the number of times HADES finds
earthquake locations in a specific coordinate in 150 iterations. The orange dots represent the best-estimate locations
produced by HADES, and the yellow dot shows the reference or master event for locating the cluster in an absolute frame.

4.2. Backprojection of phase probabilities

The migration location module of the MALMI workflow (see Deliverable 2.1, Shi et al., 2022) backprojects and stacks
generated phase probabilities (for example see section 3.3) from ML-based methods in space and time for imaging
seismic sources. In classical ML phase picking algorithms, a threshold is used to pick the arrival times of events, and the
phase probabilities are trained to peak at the arrival time, but beyond that the phase probabilities are not used. In
contrast, in the phase probability prediction module of MALMI, an adopted ML model (e.g., EQTransformer, PhaseNet)
is simply used to generate continuous phase probabilities, with no explicit event detection nor phase picking, and
therefore no threshold is required. The generated continuous phase probabilities are then used to associate the coherent
signals and detect events across the array (for more details see Shi et al., 2022). Because no explicit phase picking or
association is required, this approach can, in principle, tackle seismic events with short interevent times. With these
features, the method allows us to obtain earthquake catalogs with increased detection sensitivity and improved event
completeness.

The MALMI workflow requires seismic recordings from an array of stations (at least three stations in the array). Because
pre-trained ML models are used to process raw seismic data and convert data to bounded values between o and 1, data
from different types of instruments, such as broadband and short-period seismometers, strong-motion seismometers,
and geophones, can be simultaneously utilized in this workflow. The location accuracy of MALMI depends mainly on the
accuracy of the adopted velocity model and the ML picking uncertainties. As with other earthquake location methods,
the velocity model errors and picking uncertainties will accumulate in the final location results. Because MALMI uses an
Eikonal solver to build travel time tables from the input velocity models as with other travel time-based location methods
(e.g., NonLinLoc), the location sensitivity to the velocity model would be the same as in these traditional methods. Since
MALMI uses an array-based method (i.e., waveform migration) to locate seismic events, the geometry of the monitoring
array mainly controls the location uncertainties. For example, if the monitoring array only contains surface stations,
location uncertainties in depth will be larger than that in the horizontal direction.
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In terms of computational costs, as MALMI needs to back-project the continuous probabilities into a 4D imaging grid
(which usually have millions of grid points), MALMI is much more computationally intensive than traditional travel time-
based location methods, especially for processing large nodal arrays that contain hundreds of stations. The
computational cost of MALMI is mainly controlled by the total number of imaging grid points and secondly by the total
number of stations in the monitoring arrays. In addition, a dense monitoring array and large monitoring area will require
large computer memory as MALMI needs to build a travel time table covering all imaging grids for each station in the
array. On the other hand, the ML prediction process and the waveform migration process in MALMI can be
embarrassingly parallel, giving MALMI the feasibility for near real-time monitoring. For small monitoring areas with less
than a hundred stations, MALMI can be deployed on a single workstation or laptop; whereas for large monitoring areas
(such as ~100s km) or dense nodal arrays, MALMI should be run on an HPC.

The MALMI workflow is designed to process raw continuous seismic data and to output a seismic catalog without human
intervention once the system parameters are established. The system parameters of MALMI are (1) the probability
threshold, (2) the triggering number of stations and phases, (3) the coherency threshold of the stacked data volume, and
(4) the variance threshold of the stacked data volume. We suggest tuning these parameters on a small sub-dataset and
determining the optimal parameters before running MALMI on continuous data.

4.2.1.  Application to the COSEISMIQ, Iceland, dataset

To assess the seismic monitoring performance, we compared the full MALMI workflow (all modules) with a widely used
seismic monitoring software — SeisComP on one month of continuous dataset collected by the COSEISMIQ array in the
Hengill geothermal area, Iceland (Grigoli et al., 2022). In total, MALMI detects and locates 694 events which are
approximately 1.3 times as many seismic events as reported by SeisComP (524 events) in the same region and time range
(Figure 14). Detailed catalog comparison shows that MALMI can detect and locate around 85% (444 events) of the events
in the SeisComP catalog (Figure 14). As expected, these matched events detected and located by both the MALMI and
the SeisComP workflow mostly consist of the high-quality events with high signal-to-noise ratios (SNR). Moreover, 250
new events are additionally identified and located, which account for 36% of events in the MALMI catalog (Figure 14).
Detailed visual inspection of the waveform plots and migration profiles of many of the new events confirms that most of
these new events are real and low-magnitude events and are only visible at a few stations. We also note that MALMI
detects a new event of M 0.3 that is clearly visible at around 17 stations. Although showing high SNR and being clearly
visible at many stations, this event occurs only 15 seconds after a stronger event (M_0.4) with a similar location. The short
interevent time and significant amplitude difference likely prevented this event from being detected by the SeisComP
system.

MALMI missed 15.3% of events (80) presented in the SeisComP catalog. We visually checked the undetected events and
identified several reasons MALMI fails to detect these events. First, we found that some of the undetected events are, in
fact, not local, but regional events. In this situation, the P and S phases of remote seismic events occurring outside the
monitoring region are misidentified as two independent events by the SeisComP system and are located inside the array.
Second, we noticed that a small number of events have different event locations and origin times determined by MALMI
and SeisComP, thus they do not match when comparing the two catalogs (matched events should have an origin time
difference within 1 s and location difference within 5 km). Third, we found that some events are indeed detected by
MALMI, but are subsequently removed after the migration process, because they do not pass the energy focus criterion.
This criterion is set in place to assess whether the backprojected energy converges; convergent source energy after
backprojection and stacking will have stacked energy larger than 0.075 (Cmax 2 0.075) and a standard deviation of the
migrated volume smaller than 0.145 (std(C) < 0.145). This indicates that, compared to simple threshold criteria, a more
dedicated tool for assessing the energy focusing might improve MALMI's performance. Finally, because a pre-trained ML
model on global labeled data is used in the MALMI workflow, we observe that some region-specific signals are sometimes
missed by the ML models, thus preventing the identification of locatable seismic events, even though a very low
threshold is employed during the detection process.
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Figure 14. Comparison between the MALMI catalog and the SeisComP catalog. (a) Venn diagram showing the detection
capability statistics for the two catalogs. (b) Non-cumulative frequency-magnitude distribution of earthquakes in the
MALMI and SeisComP catalogs. (c) Earthquake magnitude versus time. The red dots denote events in the MALMI
catalog, whereas the black dots represent events in the SeisComP catalog. Event size is scaled by magnitude. The red
solid line and black dashed line show the cumulative number of events (right Y-axis) over time for the MALMI and
SeisComP catalogs, respectively. The green star denotes the occurrence of the largest event (M. 4.5 event at UTC: 30
December 2018 To02:56:20) in the monitoring time period. (d) The mean and standard deviation of the location (in both
horizontal and depth directions) and origin time differences for the codetected events in the two catalogs.

4.3. Earthquake locations from elastic Time-Reverse Imaging (TRI)

Time Reverse Imaging (TRI) refers to a waveform-based migration location scheme. The same mathematical principles
of station-receiver reciprocity of the wave equation and reciprocity in time is used as for the backprojection location
method reported in section 4.2. However, instead of calculating tables, we used an elastic waveform simulator. The basic
principle is to back propagate continuous raw waveforms using a numerical solver for the seismic wave propagation and
an adequate velocity model. The wavefield will then converge at the original source location. In media without damping
and if the complete wavefield is recorded (i.e. an infinite number of sensors), the back propagated wavefield will converge
at the true source location without any uncertainty. In real world applications, the location accuracy strongly depends on
the sensor distribution and the quality of the velocity model. For surface station networks, the inter-station distance and
maximum aperture of the network define the subsurface volume in which sources can be located (Werner & Saenger,
2018). The resolution of the velocity model needs to fit the frequency of waveform signals used in the back propagation.
In principle, the TRI workflow can be automatized. To this end, a model can be initialized at the beginning that is fed with
continuous raw waveforms to produce source images in regular time steps. Then, a ML method trained for identification
of sources from the source images can be used to produce a catalog. However, near real time application is hindered by
the fact that a numerical simulator is used for propagation of the full seismic wavefield. For three-dimensional
applications with sufficient spatial resolution, a high-performance cluster computer needs to be used. Even using very
large cluster computers, the state-of-the-art numerical simulators cannot provide near real-time simulations. There are
approaches to use GPU computations which decrease computation times by about 18 times (Xue et al., 2015). For
simulations that take 6 hours on a CPU cluster, this means a computation time of about 20 minutes. This is far from real
time applications and can only be slightly improved on by innovative numerical simulators. Therefore, we see the benefit
of using a backprojection migration method (as reported in section 4.2) in combination with a posterior analysis of
questionable waveform sections using elastic TRI. The overwhelming benefit of combining real-time waveform-based
methods with elastic TRI on targeted time windows is that the resolution of the source, especially of low-phase
probability events or events with small inter-event time, is effectively enhanced. This opens the possibility for a near-real
time production of a catalog of high-resolution source images.

4.3.1.  Application to Los Humeros, Mexico, dataset
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The TRIworkflow is applied to a dataset recorded at the geothermal site Los Humeros in Mexico (Finger & Saenger, 2021).
The surface network included 10 short-period and 17 broadband stations. At the time of the study, only a one-dimensional
velocity model was available. For demonstration purposes and to test the methodology, TRI was applied to sections of
the continuous waveform where local earthquakes were already detected. Two time segments are used here: The first
one starts at 22 April 2018 21:03:45 and the second one starts at 29 April 2018 22:49:50. After removing artificial
convergences (false positives) from the dataset, we found three detections for the time segment used on 22 April 2018
(Figure 15), whereas two detections were identified for the time segment from 29 April 2018 (Figure 16). For each time
segment, the catalog only reported one event each. This shows how TRI was able to increase the detection sensitivity.
From observations of the waveforms, it becomes clear that these additional events have very small inter-event times and
the smaller magnitude events are thus masked by the earlier larger events.
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Figure 15. Location and characterization result for the events after 22 April 2018 21:03:45
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Figure 16. Location and characterization results for the event on 29 April 2018 after 22:49:50.

4.3.2.  Application to preliminary synthetic dataset at the FORGE EGS site

The TRI workflow is applied to synthetic data generated for the FORGE EGS site. The initial set up consists of reqular
distributed sources and the velocity model derived from Zhang & Pankow (2021) and Lellouch et al. (2020). Two tests
were carried out: (1) using only a network configuration of very dense surface stations (Figure 17a), and (2) using an
additional two vertical lines of receivers that mimic borehole sensors (Figure 17b). Using only the surface stations, the
vertical uncertainty is much higher than the horizontal uncertainty, as expected. When the additional well sensors are
used, the augmented azimuthal coverage improves the overall accuracy. Especially for the sources in between the well
sensors, the accuracy improves significantly. This preliminary test shows that with the sensor setup at FORGE both during
the 2019 pilot stimulation and the 2022 stimulation, elastic TRI is able to produce locations with high accuracy. Very
similar accuracies are expected for the method described in section 4.2, albeit the overall resolution might be reduced
due to limits of the memory space for the travel-time tables and thus reduction of grid points.
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Figure 17. TRI results using very dense surface stations (left) and very dense surface stations plus two lines of vertical
borehole sensors (right). For the borehole stations, only the z component of the displacement is used. Total energy
density is shown as a gray scale. Data is cleaned using illumination map following Finger and Saenger (2020).
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5. Conclusions and Outlook

In the current deliverable we have shown methods for detection and location of (micro-) seismic events. Results from
different datasets highlight the vast capabilities of these innovative methods. In the context of geothermal projects with
thousands of micro-seismic events, short inter-event times, low magnitudes and often unfavorable azimuthal coverage,
the methods presented here are clearly superior to conventional methods. Results show a general decrease in location
uncertainty and in magnitude of completeness. However, we also show that the application in near real-time to a variety
of case sites remains challenging.

A qualitative comparison of all methods presented in this deliverable is summarized in Table 1. First, the individual needs
of the methods are outlined, followed by a qualitative assessment of accuracy, real-time capability and automatization
of each method.

Table 1: Qualitative comparison of the described methods. *R = requires; C = can use; X = cannot use

Semblance ML-based Conventional HADES with | MALMI (section | TRI

based DAS picker pickers DAS 4.2) (section 4.3)

picker (section 3.2) (section 3.4) (section 4.1)

(section 3.1)
HPC/ C(currentlynot | C X X R R
Parallelization implemented)
3D velocity model | not relevant notrelevant | not relevant X C(currentlynot | C

implemented)
Large number of | not relevant C C X (Cwith C R
stations neural
networks)

Benefits from C (currentlynot | € X X C(currentlynot | C
GPU acceleration | . implemented)

implemented)
Surface or X C R C C C
borehole stations
DAS data R C X R C(currentlynot | C

implemented)
Qualitative ranking
Spatial not applicable not not applicable | medium high high
uncertainty .
applicable
Temporal high high medium not high high
precision applicable
(potential for) high high variable (*low | low medium-high low
real-time for kpick, but
application high for
STA/LTA)

(potential for) high high variable medium high medium
automatization

In this short report we have demonstrated that ML-based pickers are generally superior to conventional pickers. On the
other hand, ML-based detectors need to be adjusted for the seismicity of each site and a training step might be necessary
for each site to ensure the highest quality of detections. The new detection method for DAS presented here highlighted
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how events detection in DAS is still challenging given the high-level of noise and unknown coupling of the cables. There
are currently no standard installation recommendations and thus each DAS system has a different seismic response.

In terms of location methods, waveform-based methods such as those presented here (MALMI and TRI) are able to
produce very high accuracy locations down to one wavelength of used frequency content. The very high computational
efforts of TRI are reduced by using pre-calculated traveltime tables such as is done in MALMI. However, near real time
analysis is still computationally expensive in 3D media and requires additional computational resources such as high-
performance clusters or parallelization. Using relative locations of clustered seismicity (HADES) provides a significant
jump in computational efficiency and is especially valuable in geothermal applications where events often occur in
clusters. The integration with DAS data is promising due to its high spatial sampling and short distance to the event
cluster. However, DAS data is typically very large and takes a long time to transfer from the acquisition computer to the
computer running the analysis, prohibiting near real time application for the time being.

Thus, an integrated approach of the presented methods might be the key for balancing accuracy and near real time
results. For example, ML-based pickers can aid in selecting appropriate time windows for backprojection and time-
reverse imaging (as demonstrated in MALMI), thus reducing the computational cost, and increasing the potential for real-
time monitoring. In terms of accuracy, locations from waveform-based methods could help orient the clustered
seismicity in HADES in the absolute spatial domain, thus also providing an increase location resolution when the
azimuthal coverage is insufficient. This is often the case in EGS projects when often only one monitoring well is available
for monitoring the seismicity.

In the remainder of the project time, we plan to make step changes in tackling some of these goals by further developing
and comparing the presented methods on two common datasets: the synthetic test bench currently under development
and the data of the April 2022 stimulation at FORGE. While the first allows us to compare true errors and identify and
overcome problems of each method, the second demonstrates the applicability to real data of a geothermal reservoir.
The standardized approach using the synthetic testbench will be available in the future as an open-source toolbox (Task
5.3). The goal is to build a flexible wrapper in the form of a Jupyter Notebook where predefined structural elements,
velocity models, sources and receivers can be added and removed in a convenient manner, and can be run on remote
sites for models on several scales. Simulations from a variety of models can then be compared to recorded
microearthquakes in order to assess their benefit for the model-data misfit. This will also allow to establish a benchmark
metrics to assess how ‘good’ a model is, and how it compares to others. This will provide a rational baseline for testing
network performances and develop good practice guidelines (Task 5.1).

We will work on defining a workflow to optimally detect and locate microseismic events in near real time within the
technology limitations. Ideally, this may be integrated into a larger modeling workflow. For example, forecasted
seismicity models could be integrated with the wave propagation solver in order to forecast ground motion. The
overarching goal is to implement this workflow at the next stimulation in FORGE in real time (M2.5, M4.5).
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